Asymptotic behaviour and correctors for linear Dirichlet problems with simultaneously varying operators and domains

Gianni Dal Maso; François Murat

Annales de l'I.H.P. Analyse non linéaire (2004)

  • Volume: 21, Issue: 4, page 445-486
  • ISSN: 0294-1449

How to cite

top

Dal Maso, Gianni, and Murat, François. "Asymptotic behaviour and correctors for linear Dirichlet problems with simultaneously varying operators and domains." Annales de l'I.H.P. Analyse non linéaire 21.4 (2004): 445-486. <http://eudml.org/doc/78625>.

@article{DalMaso2004,
author = {Dal Maso, Gianni, Murat, François},
journal = {Annales de l'I.H.P. Analyse non linéaire},
language = {eng},
number = {4},
pages = {445-486},
publisher = {Elsevier},
title = {Asymptotic behaviour and correctors for linear Dirichlet problems with simultaneously varying operators and domains},
url = {http://eudml.org/doc/78625},
volume = {21},
year = {2004},
}

TY - JOUR
AU - Dal Maso, Gianni
AU - Murat, François
TI - Asymptotic behaviour and correctors for linear Dirichlet problems with simultaneously varying operators and domains
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2004
PB - Elsevier
VL - 21
IS - 4
SP - 445
EP - 486
LA - eng
UR - http://eudml.org/doc/78625
ER -

References

top
  1. [1] Ansini N, Braides A, Separation of scales and almost-periodic effects in the asymptotic behaviour of perforated periodic media, Acta Appl. Math.65 (2001) 59-81. Zbl0988.35020MR1843786
  2. [2] Bensoussan A, Boccardo L, Dall'Aglio A, Murat F, H-convergence for quasilinear elliptic equations under natural hypotheses on the correctors, in: Proceedings of the Second Workshop on Composite Media and Homogenization Theory (Trieste, 1993), World Scientific, Singapore, 1995, pp. 93-112. 
  3. [3] Bensoussan A, Lions J.-L, Papanicolaou G, Asymptotic Analysis for Periodic Structures, North-Holland, Amsterdam, 1978. Zbl0404.35001MR503330
  4. [4] Boccardo L, Murat F, Nouveaux résultats de convergence dans des problèmes unilatéraux, in: Nonlinear Partial Differential Equations and Their Applications, Collège de France Seminar, vol. II, Res. Notes Math., vol. 60, Pitman, London, 1982, pp. 64-85. Zbl0484.49009MR652507
  5. [5] Buttazzo G, Dal Maso G, Shape optimization for Dirichlet problems: relaxed solutions and optimality conditions, Appl. Math. Optim.23 (1991) 17-49. Zbl0762.49017MR1076053
  6. [6] Calvo Jurado C, Casado Diaz J, The limit of Dirichlet systems for variable monotone operators in general perforated domains, J. Math. Pures Appl.81 (2002) 471-493. Zbl1035.35009MR1907767
  7. [7] Cioranescu D, Murat F, Un terme étrange venu d'ailleurs, I, in: Nonlinear Partial Differential Equations and Their Applications, Collège de France Seminar, vol. II, Res. Notes Math., vol. 60, Pitman, London, 1982, pp. 98-138. Zbl0496.35030MR652509
  8. [8] Dall'Aglio A, Murat F, A corrector result for H-converging parabolic problems with time-dependent coefficients, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)25 (1997) 423-464. Zbl1005.35015MR1655521
  9. [9] Dal Maso G, On the integral representation of certain local functionals, Ricerche Mat.32 (1983) 85-113. Zbl0543.49001MR740203
  10. [10] Dal Maso G, Γ-convergence and μ-capacities, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)14 (1987) 423-464. Zbl0657.49005
  11. [11] Dal Maso G, Garroni A, New results on the asymptotic behaviour of Dirichlet problems in perforated domains, Math. Models Methods Appl. Sci.4 (1994) 373-407. Zbl0804.47050MR1282241
  12. [12] Dal Maso G, Malusa A, Approximation of relaxed Dirichlet problems by boundary value problems in perforated domains, Proc. Roy. Soc. Edinburgh Sect. A125 (1995) 99-114. Zbl0828.35007MR1318625
  13. [13] Dal Maso G, Mosco U, Wiener criteria and energy decay for relaxed Dirichlet problems, Arch. Rational Mech. Anal.95 (1986) 345-387. Zbl0634.35033MR853783
  14. [14] Dal Maso G, Mosco U, Wiener's criterion and Γ-convergence, Appl. Math. Optim.15 (1987) 15-63. Zbl0644.35033
  15. [15] Dal Maso G, Murat F, Asymptotic behaviour and correctors for Dirichlet problems in perforated domains with homogeneous monotone operators, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)24 (1997) 239-290. Zbl0899.35007MR1487956
  16. [16] Evans L.C, Gariepy R.F, Measure Theory and Fine Properties of Functions, CRC Press, Boca Raton, 1992. Zbl0804.28001MR1158660
  17. [17] Heinonen J, Kilpeläinen T, Martio O, Nonlinear Potential Theory of Degenerate Elliptic Equations, Clarendon Press, Oxford, 1993. Zbl0780.31001MR1207810
  18. [18] Kovalevsky A, An effect of double homogenization for Dirichlet problems in variable domains of general structure, C. R. Acad. Sci. Paris Sér. I Math.328 (1999) 1151-1156. Zbl0931.35054MR1701376
  19. [19] Maz'ya V.G, Sobolev Spaces, Springer-Verlag, Berlin, 1985. Zbl0692.46023MR817985
  20. [20] Meyers N.G, An Lp-estimate for the gradient of solutions of second order elliptic divergence equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3)17 (1963) 189-206. Zbl0127.31904MR159110
  21. [21] Murat F, L'injection du cône positif de H−1 dans W−1,q est compacte pour tout q&lt;2, J. Math. Pures Appl.60 (1981) 309-322. Zbl0471.46020
  22. [22] F. Murat, H-convergence, Séminaire d'Analyse Fonctionnelle et Numérique, Université d'Alger, 1977–1978, multicopied, 34 pp.. 
  23. [23] Sanchez-Palencia E, Non Homogeneous Media and Vibration Theory, Lecture Notes in Phys., vol. 127, Springer-Verlag, Berlin, 1980. Zbl0432.70002MR578345
  24. [24] Spagnolo S, Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3)22 (1968) 577-597. Zbl0174.42101MR240443
  25. [25] Stampacchia G, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier (Grenoble)15 (1965) 189-258. Zbl0151.15401MR192177
  26. [26] Homogénéisation et compacité par compensation, Cours Peccot, Collège de France, March 1977, partially written in [22]. 
  27. [27] Ziemer W.P, Weakly Differentiable Functions, Springer-Verlag, Berlin, 1989. Zbl0692.46022MR1014685

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.