A Metropolis adjusted Nosé-Hoover thermostat
Benedict Leimkuhler; Sebastian Reich
ESAIM: Mathematical Modelling and Numerical Analysis (2009)
- Volume: 43, Issue: 4, page 743-755
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topLeimkuhler, Benedict, and Reich, Sebastian. "A Metropolis adjusted Nosé-Hoover thermostat." ESAIM: Mathematical Modelling and Numerical Analysis 43.4 (2009): 743-755. <http://eudml.org/doc/250604>.
@article{Leimkuhler2009,
abstract = {
We present a Monte Carlo technique for sampling from the
canonical distribution in molecular dynamics. The method is built upon
the Nosé-Hoover constant temperature formulation and the generalized
hybrid Monte Carlo method. In contrast to standard hybrid Monte Carlo methods
only the thermostat degree of freedom is stochastically resampled
during a Monte Carlo step.
},
author = {Leimkuhler, Benedict, Reich, Sebastian},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Molecular dynamics; thermostats; hybrid Monte Carlo; canonical ensemble.; molecular dynamics; canonical ensemble},
language = {eng},
month = {7},
number = {4},
pages = {743-755},
publisher = {EDP Sciences},
title = {A Metropolis adjusted Nosé-Hoover thermostat},
url = {http://eudml.org/doc/250604},
volume = {43},
year = {2009},
}
TY - JOUR
AU - Leimkuhler, Benedict
AU - Reich, Sebastian
TI - A Metropolis adjusted Nosé-Hoover thermostat
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2009/7//
PB - EDP Sciences
VL - 43
IS - 4
SP - 743
EP - 755
AB -
We present a Monte Carlo technique for sampling from the
canonical distribution in molecular dynamics. The method is built upon
the Nosé-Hoover constant temperature formulation and the generalized
hybrid Monte Carlo method. In contrast to standard hybrid Monte Carlo methods
only the thermostat degree of freedom is stochastically resampled
during a Monte Carlo step.
LA - eng
KW - Molecular dynamics; thermostats; hybrid Monte Carlo; canonical ensemble.; molecular dynamics; canonical ensemble
UR - http://eudml.org/doc/250604
ER -
References
top- E. Akhmatskaya and S. Reich, GSHMC: An efficient method for molecular simulations. J. Comput. Phys.227 (2008) 4934–4954.
- E. Akhmatskaya, N. Bou-Rabee and S. Reich, Generalized hybrid Monte Carlo methods with and without momentum flip. J. Comput. Phys.227 (2008) 4934–4954.
- M.P. Allen and D.J. Tildesley, Computer Simulation of Liquids. Clarendon Press, Oxford (1987)
- S.D. Bond, B.J. Leimkuhler and B.B. Laird, The Nosé-Poincaré method for constant temperature molecular dynamics. J. Comput. Phys.151 (1999) 114–134.
- G. Bussi, D. Donadio and M. Parrinello, Canonical sampling through velocity rescaling. J. Chem. Phys.126 (2007) 014101.
- S. Duane, A.D. Kennedy, B.J. Pendleton and D. Roweth, Hybrid Monte-Carlo. Phys. Lett. B195 (1987) 216–222.
- D. Frenkel and B. Smit, Understanding Molecular Simulation. Academic Press, New York (1996).
- W.G. Hoover, Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A31 (1985) 1695–1697.
- A.M. Horowitz, A generalized guided Monte-Carlo algorithm. Phys. Lett. B268 (1991) 247–252.
- J.A. Izaguirre and S.S. Hampton, Shadow Hybrid Monte Carlo: An efficient propagator in phase space of macromolecules. J. Comput. Phys.200 (2004) 581–604.
- A.D. Kennedy and B. Pendleton, Cost of the generalized hybrid Monte Carlo algorithm for free field theory. Nucl. Phys. B607 (2001) 456–510.
- P. Klein, Pressure and temperature control in molecular dynamics simulations: a unitary approach in discrete time. Modelling Simul. Mater. Sci. Eng.6 (1998) 405–421.
- F. Legoll, M. Luskin and R. Moeckel, Non-ergodicity of the Nose-Hoover thermostatted harmonic oscillator. Arch. Ration. Mech. Anal.184 (2007) 449–463.
- B. Leimkuhler and C. Sweet, A Hamiltonian formulation for recursive multiple thermostats in a common timescale. SIAM J. Appl. Dyn. Syst.4 (2005) 187–216.
- B. Leimkuhler, E. Noorizadeh and F. Theil, A gentle ergodic thermostat for molecular dynamics. J. Stat. Phys. (2009), doi: . DOI10.1007/s10955-009-9734-0
- J.S. Liu, Monte Carlo Strategies in Scientific Computing. Springer-Verlag, New York (2001).
- G.J. Martyna, M.L. Klein and M. Tuckerman, Nose-Hoover chains: The canonical ensemble via continuous dynamics. J. Chem. Phys.97 (1992) 2635–2643.
- S. Nosé, A unified formulation of the constant temperature molecular-dynamics methods. J. Chem. Phys.81 (1984) 511–519.
- B. Oksendal, Stochastic Differential Equations. 5th Edition, Springer-Verlag, Berlin-Heidelberg (2000).
- J.-P. Ryckaert and A. Bellemans, Molecular dynamics of liquid alkanes. Faraday Discussions66 (1978) 95–107.
- A. Samoletov, M.A.J. Chaplain and C.P. Dettmann, Thermostats for “slow" configurational modes. J. Stat. Phys.128 (2007) 1321–1336.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.