Discretization methods with analytical characteristic methods for advection-diffusion-reaction equations and 2d applications
ESAIM: Mathematical Modelling and Numerical Analysis (2009)
- Volume: 43, Issue: 6, page 1157-1183
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topReferences
top- T. Barth and M. Ohlberger, Finite volume methods: foundation and analysis, in Encyclopedia of Computational Mechanics, E. Stein, R. de Borst and T.J.R. Hughes Eds., John Wiley & Sons, Ltd (2004).
- P. Bastian and S. Lang, Couplex benchmark computations with UG. Computat. Geosci.8 (2004) 125–147.
- J. Bear, Dynamics of fluids in porous media. American Elsevier, New York, USA (1972).
- J. Bear and Y. Bachmat, Introduction to Modeling of Transport Phenomena in Porous Media. Kluwer Academic Publishers, Dordrecht, Boston, London (1991).
- A. Bourgeat, M. Kern, S. Schumacher and J. Talandier, The COUPLEX test cases: Nuclear waste disposal simulation: Simulation of transport around a nuclear waste disposal site. Computat. Geosci.8 (2004) 83–98.
- M.A. Celia, T.F. Russell, I. Herrera and R.E. Ewing, An Eulerian-Lagrangian localized adjoint method for the advection-diffusion equation. Adv. Wat. Res.13 (1990) 187–206.
- G.R. Eykolt, Analytical solution for networks of irreversible first-order reactions. Wat. Res.33 (1999) 814–826.
- R. Eymard, T. Gallouët and R. Herbin, Finite volume methods, in Handbook of Numerical Analysis7, Amsterdam, North Holland (2000) 713–1020.
- R. Eymard, T. Gallouët and R. Herbin, Finite volume approximation of elliptic problems and convergence of an approximate gradient, in Handbook of Numerical Analysis37, Appl. Numer. Math. (2001) 31–53.
- R. Eymard, T. Gallouët and R. Herbin, Error estimates for approximate solutions of a nonlinear convection-diffusion problem. Adv. Differ. Equ.7 (2002) 419–440.
- I. Farago and J. Geiser, Iterative operator-splitting methods for linear problems. International J. Computat. Sci. Eng.3 (2007) 255–263.
- E. Fein, Test-example for a waste-disposal and parameters for a decay-chain. Private communications, Braunschweig, Germany (2000).
- E. Fein, Physical Model and Mathematical Description. Private communications, Braunschweig, Germany (2001).
- E. Fein, T. Kühle and U. Noseck, Development of a software-package for three dimensional models to simulate contaminated transport problems. Technical Concepts, Braunschweig, Germany (2001).
- P. Frolkovič, Flux-based method of characteristics for contaminant transport in flowing groundwater. Comput. Vis. Sci.5 (2002) 73–83.
- P. Frolkovič and H. De Schepper, Numerical modeling of convection dominated transport coupled with density driven flow in porous media. Adv. Wat. Res.24 (2001) 63–72.
- P. Frolkovič and J. Geiser, Numerical Simulation of Radionuclides Transport in Double Porosity Media with Sorption, in Proceedings of Algorithmy 2000, Conference of Scientific Computing (2000) 28–36.
- J. Geiser, Gekoppelte Diskretisierungsverfahren für Systeme von Konvektions-Dispersions-Diffusions-Reaktionsgleichungen. Doktor-Arbeit, Universität Heidelberg, Germany (2004).
- M.T. Genuchten, Convective-dispersive transport of solutes involved in sequential first-order decay reactions. Comput. Geosci.11 (1985) 129–147.
- S.K. Godunov, A finite difference method for the numerical computation of discontinuous solutions of the equations of fluid dynamics. Mat. Sb.47 (1959) 271–290.
- E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, Springer Series in Computational Mathematics31. Springer Verlag Berlin, Heidelberg, New York (2002).
- A. Harten, B. Enguist, S. Osher and S. Charkravarthy, Uniformly high order esssentially non-oscillatory schemes I. SIAM J. Numer. Anal.24 (1987) 279–309.
- A. Harten, B. Enguist, S. Osher and S. Charkravarthy, Uniformly high order esssentially non-oscillatory schemes III. J. Computat. Phys.71 (1987) 231–303.
- W.H. Hundsdorfer, Numerical Solution of Advection-Diffusion-Reaction Equations. Technical Report NM-N9603, CWI (1996).
- W. Hundsdorfer and J.G. Verwer, Numerical Solution of Time-dependent Advection-Diffusion-Reaction Equations, Springer Series in Computational Mathematics33. Springer Verlag (2003).
- X.-D. Liu, S. Osher and T. Chan, Weighted essentially non-oscillatory schemes. J. Comput. Phys.115 (1994) 200–212.
- R.J. LeVeque, Numerical Methods for Conservation Laws, Lectures in Mathematics. Birkhäuser Verlag Basel, Boston, Berlin (1992).
- R.J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge Texts in Applied Mathematics. Cambridge University Press (2002).
- R.I. McLachlan, R.G.W. Quispel, Splitting methods. Acta Numer.11 (2002) 341–434.
- K.W. Morton, On the analysis of finite volume methods for evolutionary problems. SIAM J. Numer. Anal.35 (1998) 2195–2222.
- P.J. Roache, A flux-based modified method of characteristics. Int. J. Numer. Methods Fluids12 (1992) 1259–1275.
- A.E. Scheidegger, General theory of dispersion in porous media. J. Geophysical Research66 (1961) 32–73.
- C.-W. Shu, High order finite difference and finite volume WENO schemes and discontinuous Galerkin methods for CFD. Internat. J. Comput. Fluid Dynamics17 (2003) 107–118.
- T. Sonar, On the design of an upwind scheme for compressible flow on general triangulation. Numer. Anal.4 (1993) 135–148.
- B. Sportisse, An analysis of operator-splitting techniques in the stiff case. J. Comput. Phys.161 (2000) 140–168.
- G. Strang, On the construction and comparison of difference schemes. SIAM J. Numer. Anal.5 (1968) 506–517.
- Y. Sun, J.N. Petersen and T.P. Clement, Analytical solutions for multiple species reactive transport in multiple dimensions. J. Contam. Hydrol.35 (1999) 429–440.
- V. Thomee, Galerkin Finite Element Methods for Parabolic Problems, Lecture Notes in Mathematics1054. Springer Verlag, Berlin, Heidelberg (1984).
- J.G. Verwer and B. Sportisse, A note on operator-splitting in a stiff linear case. MAS-R9830, ISSN (1998) 1386–3703.
- Z. Zlatev, Computer Treatment of Large Air Pollution Models. Kluwer Academic Publishers (1995).