Hölderian invariance principle for Hilbertian linear processes

Alfredas Račkauskas; Charles Suquet

ESAIM: Probability and Statistics (2009)

  • Volume: 13, page 261-275
  • ISSN: 1292-8100

Abstract

top
Let ( ξ n ) n 1 be the polygonal partial sums processes built on the linear processes X n = i 0 a i ( ϵ n - i ) , n ≥ 1, where ( ϵ i ) i are i.i.d., centered random elements in some separable Hilbert space and the ai's are bounded linear operators , with i 0 a i < . We investigate functional central limit theorem for ξ n in the Hölder spaces H ρ o ( ) of functions x : [ 0 , 1 ] such that ||x(t + h) - x(t)|| = o(p(h)) uniformly in t, where p(h) = hαL(1/h), 0 ≤ h ≤ 1 with 0 ≤ α ≤ 1/2 and L slowly varying at infinity. We obtain the H ρ o ( ) weak convergence of ξ n to some valued Brownian motion under the optimal assumption that for any c>0, t P ( ϵ 0 > c t 1 / 2 ρ ( 1 / t ) ) = o ( 1 ) when t tends to infinity, subject to some mild restriction on L in the boundary case α = 1/2. Our result holds in particular with the weight functions p(h) = h1/2lnβ(1/h), β > 1/2>.

How to cite

top

Račkauskas, Alfredas, and Suquet, Charles. "Hölderian invariance principle for Hilbertian linear processes." ESAIM: Probability and Statistics 13 (2009): 261-275. <http://eudml.org/doc/250626>.

@article{Račkauskas2009,
abstract = { Let $(\xi_n)_\{n\ge 1\}$ be the polygonal partial sums processes built on the linear processes $X_n=\sum_\{i\ge 0\}a_i(\epsilon_\{n-i\})$, n ≥ 1, where $(\epsilon_i)_\{i\in\mathbb\{Z\}\}$ are i.i.d., centered random elements in some separable Hilbert space $\mathbb\{H\}$ and the ai's are bounded linear operators $\mathbb\{H\}\to \mathbb\{H\}$, with $\sum_\{i\ge 0\}\lVert a_i\rVert<\infty$. We investigate functional central limit theorem for $\xi_n$ in the Hölder spaces $\mathrm\{H\}^o_\rho(\mathbb\{H\})$ of functions $x:[0,1]\to\mathbb\{H\}$ such that ||x(t + h) - x(t)|| = o(p(h)) uniformly in t, where p(h) = hαL(1/h), 0 ≤ h ≤ 1 with 0 ≤ α ≤ 1/2 and L slowly varying at infinity. We obtain the $\mathrm\{H\}^o_\rho(\mathbb\{H\})$ weak convergence of $\xi_n$ to some $\mathbb\{H\}$ valued Brownian motion under the optimal assumption that for any c>0, $tP(\lVert \epsilon_0\rVert>ct^\{1/2\}\rho(1/t))=o(1)$ when t tends to infinity, subject to some mild restriction on L in the boundary case α = 1/2. Our result holds in particular with the weight functions p(h) = h1/2lnβ(1/h), β > 1/2>. },
author = {Račkauskas, Alfredas, Suquet, Charles},
journal = {ESAIM: Probability and Statistics},
keywords = {Central limit theorem in Banach spaces; Hölder space; functional central limit theorem; linear process; partial sums process; central limit theorem in Banach spaces; functional central limit theorem},
language = {eng},
month = {7},
pages = {261-275},
publisher = {EDP Sciences},
title = {Hölderian invariance principle for Hilbertian linear processes},
url = {http://eudml.org/doc/250626},
volume = {13},
year = {2009},
}

TY - JOUR
AU - Račkauskas, Alfredas
AU - Suquet, Charles
TI - Hölderian invariance principle for Hilbertian linear processes
JO - ESAIM: Probability and Statistics
DA - 2009/7//
PB - EDP Sciences
VL - 13
SP - 261
EP - 275
AB - Let $(\xi_n)_{n\ge 1}$ be the polygonal partial sums processes built on the linear processes $X_n=\sum_{i\ge 0}a_i(\epsilon_{n-i})$, n ≥ 1, where $(\epsilon_i)_{i\in\mathbb{Z}}$ are i.i.d., centered random elements in some separable Hilbert space $\mathbb{H}$ and the ai's are bounded linear operators $\mathbb{H}\to \mathbb{H}$, with $\sum_{i\ge 0}\lVert a_i\rVert<\infty$. We investigate functional central limit theorem for $\xi_n$ in the Hölder spaces $\mathrm{H}^o_\rho(\mathbb{H})$ of functions $x:[0,1]\to\mathbb{H}$ such that ||x(t + h) - x(t)|| = o(p(h)) uniformly in t, where p(h) = hαL(1/h), 0 ≤ h ≤ 1 with 0 ≤ α ≤ 1/2 and L slowly varying at infinity. We obtain the $\mathrm{H}^o_\rho(\mathbb{H})$ weak convergence of $\xi_n$ to some $\mathbb{H}$ valued Brownian motion under the optimal assumption that for any c>0, $tP(\lVert \epsilon_0\rVert>ct^{1/2}\rho(1/t))=o(1)$ when t tends to infinity, subject to some mild restriction on L in the boundary case α = 1/2. Our result holds in particular with the weight functions p(h) = h1/2lnβ(1/h), β > 1/2>.
LA - eng
KW - Central limit theorem in Banach spaces; Hölder space; functional central limit theorem; linear process; partial sums process; central limit theorem in Banach spaces; functional central limit theorem
UR - http://eudml.org/doc/250626
ER -

References

top
  1. N.H. Bingham, C.M. Goldie and J.L. Teugels, Regular variation. Encyclopaedia of Mathematics and its Applications. Cambridge University Press (1987).  Zbl0617.26001
  2. J. Dedecker and F. Merlevède, The conditional central limit theorem in Hilbert spaces. Stoch. Process. Appl.108 (2003) 229–262.  Zbl1075.60501
  3. J. Dedecker, P. Doukhan, G. Lang, J.R. Leon, S. Louhichi and C. Prieur, Weak Dependence: With Examples and Applications, volume 190 of Lect. Notes Statist. Springer (2007).  Zbl1165.62001
  4. D. Hamadouche, Invariance principles in Hölder spaces. Portugal. Math.57 (2000) 127–151.  Zbl0965.60011
  5. M. Juodis, A. Račkauskas and Ch. Suquet, Hölderian functional central limit theorems for linear processes. ALEA Lat. Am. J. Probab. Math. Stat.5 (2009) 47–64.  Zbl1162.60317
  6. J. Kuelbs, The invariance principle for Banach space valued random variables. J. Multiv. Anal.3 (1973) 161–172.  Zbl0258.60009
  7. J. Lamperti, On convergence of stochastic processes. Trans. Amer. Math. Soc.104 (1962) 430–435.  Zbl0113.33502
  8. M. Ledoux and M. Talagrand, Probability in Banach Spaces. Springer-Verlag, Berlin, Heidelberg (1991).  Zbl0748.60004
  9. F. Merlevède, M. Peligrad and S. Utev, Sharp conditions for the CLT of linear processes in a Hilbert space. J. Theoret. Probab.10 (1997) 681–693.  Zbl0885.60015
  10. F. Merlevède, M. Peligrad and S. Utev, Recent advances in invariance principles for stationary sequences. Probab. Surveys3 (2006) 1–36.  Zbl1189.60078
  11. A. Račkauskas and Ch. Suquet, Hölder versions of Banach spaces valued random fields. Georgian Math. J.8 (2001) 347–362.  Zbl1017.60042
  12. A. Račkauskas and Ch. Suquet, Necessary and sufficient condition for the Hölderian functional central limit theorem. J. Theoret. Probab.17 (2004) 221–243.  Zbl1069.60034
  13. A. Račkauskas and Ch. Suquet, Hölder norm test statistics for epidemic change. J. Statist. Plann. Inference126 (2004) 495–520.  Zbl1084.62083
  14. A. Račkauskas and Ch. Suquet, Central limit theorems in Hölder topologies for Banach space valued random fields. Theor. Probab. Appl.49 (2004) 109–125.  Zbl1095.60001
  15. A. Račkauskas and Ch. Suquet, Testing epidemic changes of infinite dimensional parameters. Stat. Inference Stoch. Process.9 (2006) 111–134.  Zbl1110.62060
  16. M. Talagrand, Isoperimetry and integrability of the sum of independent Banach-space valued random variables. Ann. Probab.17 (1989) 1546–1570.  Zbl0692.60016

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.