Postprocessing of a finite volume element method for semilinear parabolic problems
Min Yang; Chunjia Bi; Jiangguo Liu
ESAIM: Mathematical Modelling and Numerical Analysis (2009)
- Volume: 43, Issue: 5, page 957-971
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topReferences
top- R. Adams and J.J.F. Fournier, Sobolev Spaces. Academic Press, New York (2003).
- C. Bi and V. Ginting, Two-grid finite volume element method for linear and nonlinear elliptic problems. Numer. Math.107 (2007) 177–198.
- S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods. Springer-Verlag, New York, 2nd edn., (2002).
- Z. Cai, On the finite volume element method. Numer. Math.58 (1991) 713–735.
- Z. Cai, J. Mandel and S. McCormick, The finite volume element method for diffusion equations on general triangulations. SIAM J. Numer. Anal.28 (1991) 392–402.
- C. Carstensen, R. Lazarov and S. Tomov, Explicit and averaging a posteriori error estimates for adaptive finite volume methods. SIAM J. Numer. Anal.42 (2005) 2496–2521.
- P. Chatzipantelidis and R.D. Lazarov, Error estimates for a finite volume element method for elliptic PDEs in nonconvex polygonal domains. SIAM J. Numer. Anal.42 (2004) 1932–1958.
- P. Chatzipantelidis, R.D. Lazarov and V. Thomée, Error estimates for a finite volume element method for parabolic equations in convex polygonal domains. Numer. Meth. PDEs20 (2004) 650–674.
- S.H. Chou and D.Y. Kwak, Multigrid algorithms for a vertex-centered covolume method for elliptic problems. Numer. Math.90 (2002) 459–486.
- S.H. Chou and Q. Li, Error estimates in L2, H1 and in covolume methods for elliptic and parabolic problems: a unified approach. Math. Comp.69 (2000) 103–120.
- S.H. Chou, D.Y. Kwak and Q. Li, Lp error estimates and superconvergence for covolume or finite volume element methods. Numer. Meth. PDEs19 (2003) 463–486.
- P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978).
- C.N. Dawson, M.F. Wheeler and C.S. Woodward, A two-grid finite difference scheme for nonlinear parabolic equations. SIAM J. Numer. Anal.35 (1998) 435–452.
- J. de Frutos and J. Novo, Postprocessing the linear finite element method. SIAM J. Numer. Anal.40 (2002) 805–819.
- R.E. Ewing, T. Lin and Y. Lin, On the accuracy of the finite volume element method based on piecewise linear polynomials. SIAM J. Numer. Anal.39 (2002) 1865–1888.
- R. Eymard, T. Gallouët and R. Herbin, Finite Volume Methods: Handbook of Numerical Analysis. North-Holland, Amsterdam (2000).
- M. Feistauer, J. Felcman, M. Lukáčová-Medvidová and G. Warnecke, Error estimates of a combined finite volume-finite element method for nonlinear convection-diffusion problems. SIAM J. Numer. Anal.36 (1999) 1528–1548.
- B. García-Archilla, J. Novo and E.S. Titi, Postprocessing the Galerkin method: a novel approach to approximate inertial manifolds. SIAM J. Numer. Anal.35 (1998) 941–972.
- B. García-Archilla and E.S. Titi, Postprocessing the Galerkin method: the finite element case. SIAM J. Numer. Anal.37 (2000) 470–499.
- D. Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics840. Springer-Verlag, New York (1989).
- A. Lasis and E. Süli, hp-version discontinuous Galerkin finite element method for semilinear parabolic problems. SIAM J. Numer. Anal.45 (2007) 1544–1569.
- R. Li, Z. Chen and W. Wu, Generalized Difference Methods for Differential Equations: Numerical Analysis of Finite Volume Methods. Marcel Dekker, New York (2000).
- X. Ma, S. Shu and A. Zhou, Symmetric finite volume discretizations for parabolic problems. Comput. Methods Appl. Mech. Engrg.192 (2003) 4467–4485.
- M. Marion and J.C. Xu, Error estimates on a new nonlinear Galerkin method based on two-grid finite elements. SIAM J. Numer. Anal.32 (1995) 1170–1184.
- H. Rui, Symmetric modified finite volume element methods for self-adjoint elliptic and parabolic problems. J. Comput. Appl. Math.146 (2002) 373–386.
- A.H. Schatz, V. Thomée and L. Wahlbin, Maximum norm stability and error estimates in parabolic finite element equations. Comm. Pure Appl. Math.33 (1980) 265–304.
- R.K. Sinha and J. Geiser, Error estimates for finite volume element methods for convection-diffusion-reaction equations. Appl. Numer. Math.57 (2007) 59–72.
- R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences68. Springer-Verlag, Berlin (1988).
- V. Thomée, Galerkin Finite Element Methods for Parabolic Problems. Springer-Verlag, Berlin (1997).
- V. Thomée and L. Wahlbin, On Galerkin methods in semilinear parabolic problems. SIAM J. Numer. Anal.12 (1975) 378–389.
- Y. Yan, Postprocessing the finite element method for semilinear parabolic problems. SIAM J. Numer. Anal.44 (2006) 1681–1702.
- M. Yang, A second-order finite volume element method on quadrilateral meshes for elliptic equations. ESAIM: M2AN40 (2006) 1053–1067.
- X. Ye, A discontinuous finite volume method for the Stokes problems. SIAM J. Numer. Anal.44 (2006) 183–198.
- S. Zhang, On domain decomposition algorithms for covolume methods for elliptic problems. Comput. Methods Appl. Mech. Engrg.196 (2006) 24–32.