Relaxation and numerical approximation of a two-fluid two-pressure diphasic model
Annalisa Ambroso; Christophe Chalons; Frédéric Coquel; Thomas Galié
ESAIM: Mathematical Modelling and Numerical Analysis (2009)
- Volume: 43, Issue: 6, page 1063-1097
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topReferences
top- R. Abgrall and R. Saurel, Discrete equations for physical and numerical compressible multiphase mixtures. J. Comput. Phys.186 (2003) 361–396.
- A. Ambroso, C. Chalons, F. Coquel, T. Galié, E. Godlewski, P.-A Raviart and N. Seguin, The drift-flux asymptotic limit of barotropic two-phase two-pressure models. Comm. Math. Sci.6 (2008) 521–529.
- N. Andrianov, Analytical and numerical investigation of two-phase flows. Ph.D. Thesis, Univ. Magdeburg, Germany (2003).
- N. Andrianov and G. Warnecke, The Riemann problem for the Baer-Nunziato two-phase flow model. J. Comput. Phys.195 (2004) 434–464.
- N. Andrianov, R. Saurel and G. Warnecke, A simple method for compressible multiphase mixtures and interfaces. Int. J. Numer. Methods Fluids41 (2003) 109–131.
- M.R. Baer and J.W. Nunziato, A two phase mixture theory for the deflagration to detonation (DDT) transition in reactive granular materials. Int. J. Multiphase Flows12 (1986) 861–889.
- C. Berthon, B. Braconnier, B. Nkonga, Numerical approximation of a degenerate non-conservative multifluid model: relaxation scheme. Int. J. Numer. Methods Fluids48 (2005) 85–90.
- F. Bouchut, Nonlinear stability of finite volume methods for hyperbolic conservation laws, and well-balanced schemes for sources, Frontiers in Mathematics series. Birkhauser (2004).
- B. Braconnier, Modélisation numérique d'écoulements multiphasiques pour des fluides compressibles, non miscibles et soumis aux effets capillaires. Ph.D. Thesis, Université Bordeaux I, France (2007).
- T. Buffard, T. Gallouët and J.M. Hérard, A sequel to a rough Godunov scheme. Application to real gas flows. Comput. Fluids29 (2000) 813–847.
- C.E. Castro and E.F. Toro, A Riemann solver and upwind methods for a two-phase flow model in nonconservative form. Int. J. Numer. Methods Fluids50 (2006) 275–307.
- C. Chalons and F. Coquel, Navier-Stokes equations with several independent pressure laws and explicit predictor-corrector schemes. Numer. Math.101 (2005) 451–478.
- C. Chalons and J.F. Coulombel, Relaxation approximation of the Euler equations. J. Math. Anal. Appl.348 (2008) 872–893.
- F. Coquel, K. El Amine, E. Godlewski, B. Perthame and P. Rascle, Numerical methods using upwind schemes for the resolution of two-phase flows. J. Comput. Phys.136 (1997) 272–288.
- F. Coquel, E. Godlewski, A. In, B. Perthame and P. Rascle, Some new Godunov and relaxation methods for two phase flows, in Proceedings of the International Conference on Godunov methods: theory and applications, Kluwer Academic, Plenum Publisher (2001).
- F. Coquel, T. Gallouët, J.M. Hérard and N. Seguin, Closure laws for a two-phase two-pressure model. C. R. Math.334 (2002) 927–932.
- F. Dubois and P.G. LeFloch, Boundary conditions for nonlinear hyperbolic systems of conservation laws. J. Differ. Equ.71 (1988) 93–122.
- P. Embid and M. Baer, Mathematical analysis of a two-phase continuum mixture theory. Contin. Mech. Thermodyn.4 (1992) 279–312.
- T. Galié, Couplage interfacial de modèles en dynamique des fluides. Application aux écoulements diphasiques. Ph.D. Thesis, Université Pierre et Marie Curie, France (2008).
- T. Gallouët, J.M. Hérard and N. Seguin, Numerical modeling of two-phase flows using the two-fluid two-pressure approach. Math. Mod. Meth. Appl. Sci.14 (2004) 663–700.
- S. Gavrilyuk and R. Saurel, Mathematical and numerical modeling of two-phase compressible flows with micro-inertia. J. Comput. Phys.175 (2002) 326–360.
- J. Glimm, D. Saltz and D.H. Sharp, Two phase flow modelling of a fluid mixing layer. J. Fluid Mech.378 (1999) 119–143.
- P. Goatin and P.G. LeFloch, The Riemann problem for a class of resonant nonlinear systems of balance laws. Ann. Inst. H. Poincaré, Anal. Non linéaire21 (2004) 881–902.
- E. Godlewski and P.A. Raviart, Numerical approximation of hyperbolic systems of conservation laws. Springer-Verlag (1996).
- V. Guillemaud, Modélisation et simulation numérique des écoulements diphasiques par une approche bifluide à deux pressions. Ph.D. Thesis, Université de Provence, Aix-Marseille 1, France (2007).
- S. Jin and Z. Xin, The relaxation schemes for systems of conservation laws in arbitrary space dimensions. Comm. Pure Appl. Math.48 (1995) 235–276.
- A.K. Kapila, S.F. Son, J.B. Bdzil, R. Menikoff and D.S. Stewart, Two phase modeling of DDT: structure of the velocity-relaxation zone. Phys. Fluids9 (1997) 3885–3897.
- S. Karni, E. Kirr, A. Kurganov and G. Petrova, Compressible two-phase flows by central and upwind schemes. ESAIM: M2AN38 (2004) 477–493.
- P.G. LeFloch, Entropy weak solutions to nonlinear hyperbolic systems in nonconservative form. Commun. Partial Differ. Equ.13 (1988) 669–727.
- P.G. LeFloch, Shock waves for nonlinear hyperbolic systems in nonconservative form. Preprint # 593, Institute for Math. and its Appl., Minneapolis, USA (1989).
- P.G. LeFloch and M.D. Thanh, The Riemann problem for fluid flows in a nozzle with discontinuous cross-section. Comm. Math. Sci.1 (2003) 763–796.
- S.T. Munkejord, Comparison of Roe-type methods for solving the two-fluid model with and without pressure relaxation. Comput. Fluids36 (2007) 1061–1080.
- V.H. Ransom, Numerical benchmark tests, in Multiphase science and technology, Vol. 3, G.F. Hewitt, J.M. Delhaye and N. Zuber Eds., Washington, USA, Hemisphere/Springer (1987) 465–467.
- V.V Rusanov, Calculation of interaction of non-steady shock waves with obstacles. J. Comp. Math. Phys. USSR1 (1961) 267–279.
- R. Saurel and R. Abgrall, A multiphase Godunov method for compressible multifluid and multiphase flows. J. Comput. Phys.150 (1999) 425–467.
- R. Saurel and O. Lemetayer, A multiphase model for compressible flows with interfaces, shocks, detonation waves and cavitation. J. Fluid Mech.431 (2001) 239–271.
- D.W. Schwendeman, C.W. Wahle and A.K Kapila, The Riemann problem and high-resolution Godunov method for a model of compressible two-phase flow. J. Comput. Phys.212 (2006) 490–526.