Relaxation and numerical approximation of a two-fluid two-pressure diphasic model

Annalisa Ambroso; Christophe Chalons; Frédéric Coquel; Thomas Galié

ESAIM: Mathematical Modelling and Numerical Analysis (2009)

  • Volume: 43, Issue: 6, page 1063-1097
  • ISSN: 0764-583X

Abstract

top
This paper is concerned with the numerical approximation of the solutions of a two-fluid two-pressure model used in the modelling of two-phase flows. We present a relaxation strategy for easily dealing with both the nonlinearities associated with the pressure laws and the nonconservative terms that are inherently present in the set of convective equations and that couple the two phases. In particular, the proposed approximate Riemann solver is given by explicit formulas, preserves the natural phase space, and exactly captures the coupling waves between the two phases. Numerical evidences are given to corroborate the validity of our approach.

How to cite

top

Ambroso, Annalisa, et al. "Relaxation and numerical approximation of a two-fluid two-pressure diphasic model." ESAIM: Mathematical Modelling and Numerical Analysis 43.6 (2009): 1063-1097. <http://eudml.org/doc/250664>.

@article{Ambroso2009,
abstract = { This paper is concerned with the numerical approximation of the solutions of a two-fluid two-pressure model used in the modelling of two-phase flows. We present a relaxation strategy for easily dealing with both the nonlinearities associated with the pressure laws and the nonconservative terms that are inherently present in the set of convective equations and that couple the two phases. In particular, the proposed approximate Riemann solver is given by explicit formulas, preserves the natural phase space, and exactly captures the coupling waves between the two phases. Numerical evidences are given to corroborate the validity of our approach. },
author = {Ambroso, Annalisa, Chalons, Christophe, Coquel, Frédéric, Galié, Thomas},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Two-phase flows; two-fluid two-pressure model; hyperbolic systems; finite volume methods; relaxation schemes; Riemann solvers.; two-phase flows; Riemann solvers},
language = {eng},
month = {10},
number = {6},
pages = {1063-1097},
publisher = {EDP Sciences},
title = {Relaxation and numerical approximation of a two-fluid two-pressure diphasic model},
url = {http://eudml.org/doc/250664},
volume = {43},
year = {2009},
}

TY - JOUR
AU - Ambroso, Annalisa
AU - Chalons, Christophe
AU - Coquel, Frédéric
AU - Galié, Thomas
TI - Relaxation and numerical approximation of a two-fluid two-pressure diphasic model
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2009/10//
PB - EDP Sciences
VL - 43
IS - 6
SP - 1063
EP - 1097
AB - This paper is concerned with the numerical approximation of the solutions of a two-fluid two-pressure model used in the modelling of two-phase flows. We present a relaxation strategy for easily dealing with both the nonlinearities associated with the pressure laws and the nonconservative terms that are inherently present in the set of convective equations and that couple the two phases. In particular, the proposed approximate Riemann solver is given by explicit formulas, preserves the natural phase space, and exactly captures the coupling waves between the two phases. Numerical evidences are given to corroborate the validity of our approach.
LA - eng
KW - Two-phase flows; two-fluid two-pressure model; hyperbolic systems; finite volume methods; relaxation schemes; Riemann solvers.; two-phase flows; Riemann solvers
UR - http://eudml.org/doc/250664
ER -

References

top
  1. R. Abgrall and R. Saurel, Discrete equations for physical and numerical compressible multiphase mixtures. J. Comput. Phys.186 (2003) 361–396.  
  2. A. Ambroso, C. Chalons, F. Coquel, T. Galié, E. Godlewski, P.-A Raviart and N. Seguin, The drift-flux asymptotic limit of barotropic two-phase two-pressure models. Comm. Math. Sci.6 (2008) 521–529.  
  3. N. Andrianov, Analytical and numerical investigation of two-phase flows. Ph.D. Thesis, Univ. Magdeburg, Germany (2003).  
  4. N. Andrianov and G. Warnecke, The Riemann problem for the Baer-Nunziato two-phase flow model. J. Comput. Phys.195 (2004) 434–464.  
  5. N. Andrianov, R. Saurel and G. Warnecke, A simple method for compressible multiphase mixtures and interfaces. Int. J. Numer. Methods Fluids41 (2003) 109–131.  
  6. M.R. Baer and J.W. Nunziato, A two phase mixture theory for the deflagration to detonation (DDT) transition in reactive granular materials. Int. J. Multiphase Flows12 (1986) 861–889.  
  7. C. Berthon, B. Braconnier, B. Nkonga, Numerical approximation of a degenerate non-conservative multifluid model: relaxation scheme. Int. J. Numer. Methods Fluids48 (2005) 85–90.  
  8. F. Bouchut, Nonlinear stability of finite volume methods for hyperbolic conservation laws, and well-balanced schemes for sources, Frontiers in Mathematics series. Birkhauser (2004).  
  9. B. Braconnier, Modélisation numérique d'écoulements multiphasiques pour des fluides compressibles, non miscibles et soumis aux effets capillaires. Ph.D. Thesis, Université Bordeaux I, France (2007).  
  10. T. Buffard, T. Gallouët and J.M. Hérard, A sequel to a rough Godunov scheme. Application to real gas flows. Comput. Fluids29 (2000) 813–847.  
  11. C.E. Castro and E.F. Toro, A Riemann solver and upwind methods for a two-phase flow model in nonconservative form. Int. J. Numer. Methods Fluids50 (2006) 275–307.  
  12. C. Chalons and F. Coquel, Navier-Stokes equations with several independent pressure laws and explicit predictor-corrector schemes. Numer. Math.101 (2005) 451–478.  
  13. C. Chalons and J.F. Coulombel, Relaxation approximation of the Euler equations. J. Math. Anal. Appl.348 (2008) 872–893.  
  14. F. Coquel, K. El Amine, E. Godlewski, B. Perthame and P. Rascle, Numerical methods using upwind schemes for the resolution of two-phase flows. J. Comput. Phys.136 (1997) 272–288.  
  15. F. Coquel, E. Godlewski, A. In, B. Perthame and P. Rascle, Some new Godunov and relaxation methods for two phase flows, in Proceedings of the International Conference on Godunov methods: theory and applications, Kluwer Academic, Plenum Publisher (2001).  
  16. F. Coquel, T. Gallouët, J.M. Hérard and N. Seguin, Closure laws for a two-phase two-pressure model. C. R. Math.334 (2002) 927–932.  
  17. F. Dubois and P.G. LeFloch, Boundary conditions for nonlinear hyperbolic systems of conservation laws. J. Differ. Equ.71 (1988) 93–122.  
  18. P. Embid and M. Baer, Mathematical analysis of a two-phase continuum mixture theory. Contin. Mech. Thermodyn.4 (1992) 279–312.  
  19. T. Galié, Couplage interfacial de modèles en dynamique des fluides. Application aux écoulements diphasiques. Ph.D. Thesis, Université Pierre et Marie Curie, France (2008).  
  20. T. Gallouët, J.M. Hérard and N. Seguin, Numerical modeling of two-phase flows using the two-fluid two-pressure approach. Math. Mod. Meth. Appl. Sci.14 (2004) 663–700.  
  21. S. Gavrilyuk and R. Saurel, Mathematical and numerical modeling of two-phase compressible flows with micro-inertia. J. Comput. Phys.175 (2002) 326–360.  
  22. J. Glimm, D. Saltz and D.H. Sharp, Two phase flow modelling of a fluid mixing layer. J. Fluid Mech.378 (1999) 119–143.  
  23. P. Goatin and P.G. LeFloch, The Riemann problem for a class of resonant nonlinear systems of balance laws. Ann. Inst. H. Poincaré, Anal. Non linéaire21 (2004) 881–902.  
  24. E. Godlewski and P.A. Raviart, Numerical approximation of hyperbolic systems of conservation laws. Springer-Verlag (1996).  
  25. V. Guillemaud, Modélisation et simulation numérique des écoulements diphasiques par une approche bifluide à deux pressions. Ph.D. Thesis, Université de Provence, Aix-Marseille 1, France (2007).  
  26. S. Jin and Z. Xin, The relaxation schemes for systems of conservation laws in arbitrary space dimensions. Comm. Pure Appl. Math.48 (1995) 235–276.  
  27. A.K. Kapila, S.F. Son, J.B. Bdzil, R. Menikoff and D.S. Stewart, Two phase modeling of DDT: structure of the velocity-relaxation zone. Phys. Fluids9 (1997) 3885–3897.  
  28. S. Karni, E. Kirr, A. Kurganov and G. Petrova, Compressible two-phase flows by central and upwind schemes. ESAIM: M2AN38 (2004) 477–493.  
  29. P.G. LeFloch, Entropy weak solutions to nonlinear hyperbolic systems in nonconservative form. Commun. Partial Differ. Equ.13 (1988) 669–727.  
  30. P.G. LeFloch, Shock waves for nonlinear hyperbolic systems in nonconservative form. Preprint # 593, Institute for Math. and its Appl., Minneapolis, USA (1989).  
  31. P.G. LeFloch and M.D. Thanh, The Riemann problem for fluid flows in a nozzle with discontinuous cross-section. Comm. Math. Sci.1 (2003) 763–796.  
  32. S.T. Munkejord, Comparison of Roe-type methods for solving the two-fluid model with and without pressure relaxation. Comput. Fluids36 (2007) 1061–1080.  
  33. V.H. Ransom, Numerical benchmark tests, in Multiphase science and technology, Vol. 3, G.F. Hewitt, J.M. Delhaye and N. Zuber Eds., Washington, USA, Hemisphere/Springer (1987) 465–467.  
  34. V.V Rusanov, Calculation of interaction of non-steady shock waves with obstacles. J. Comp. Math. Phys. USSR1 (1961) 267–279.  
  35. R. Saurel and R. Abgrall, A multiphase Godunov method for compressible multifluid and multiphase flows. J. Comput. Phys.150 (1999) 425–467.  
  36. R. Saurel and O. Lemetayer, A multiphase model for compressible flows with interfaces, shocks, detonation waves and cavitation. J. Fluid Mech.431 (2001) 239–271.  
  37. D.W. Schwendeman, C.W. Wahle and A.K Kapila, The Riemann problem and high-resolution Godunov method for a model of compressible two-phase flow. J. Comput. Phys.212 (2006) 490–526.  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.