# A robust entropy−satisfying finite volume scheme for the isentropic Baer−Nunziato model

Frédéric Coquel; Jean-Marc Hérard; Khaled Saleh; Nicolas Seguin

- Volume: 48, Issue: 1, page 165-206
- ISSN: 0764-583X

## Access Full Article

top## Abstract

top## How to cite

topCoquel, Frédéric, et al. "A robust entropy−satisfying finite volume scheme for the isentropic Baer−Nunziato model." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 48.1 (2014): 165-206. <http://eudml.org/doc/273257>.

@article{Coquel2014,

abstract = {We construct an approximate Riemann solver for the isentropic Baer−Nunziato two-phase flow model, that is able to cope with arbitrarily small values of the statistical phase fractions. The solver relies on a relaxation approximation of the model for which the Riemann problem is exactly solved for subsonic relative speeds. In an original manner, the Riemann solutions to the linearly degenerate relaxation system are allowed to dissipate the total energy in the vanishing phase regimes, thereby enforcing the robustness and stability of the method in the limits of small phase fractions. The scheme is proved to satisfy a discrete entropy inequality and to preserve positive values of the statistical fractions and densities. The numerical simulations show a much higher precision and a more reduced computational cost (for comparable accuracy) than standard numerical schemes used in the nuclear industry. Finally, two test-cases assess the good behavior of the scheme when approximating vanishing phase solutions.},

author = {Coquel, Frédéric, Hérard, Jean-Marc, Saleh, Khaled, Seguin, Nicolas},

journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},

keywords = {two-phase flows; entropy-satisfying methods; relaxation techniques; Riemann problem},

language = {eng},

number = {1},

pages = {165-206},

publisher = {EDP-Sciences},

title = {A robust entropy−satisfying finite volume scheme for the isentropic Baer−Nunziato model},

url = {http://eudml.org/doc/273257},

volume = {48},

year = {2014},

}

TY - JOUR

AU - Coquel, Frédéric

AU - Hérard, Jean-Marc

AU - Saleh, Khaled

AU - Seguin, Nicolas

TI - A robust entropy−satisfying finite volume scheme for the isentropic Baer−Nunziato model

JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

PY - 2014

PB - EDP-Sciences

VL - 48

IS - 1

SP - 165

EP - 206

AB - We construct an approximate Riemann solver for the isentropic Baer−Nunziato two-phase flow model, that is able to cope with arbitrarily small values of the statistical phase fractions. The solver relies on a relaxation approximation of the model for which the Riemann problem is exactly solved for subsonic relative speeds. In an original manner, the Riemann solutions to the linearly degenerate relaxation system are allowed to dissipate the total energy in the vanishing phase regimes, thereby enforcing the robustness and stability of the method in the limits of small phase fractions. The scheme is proved to satisfy a discrete entropy inequality and to preserve positive values of the statistical fractions and densities. The numerical simulations show a much higher precision and a more reduced computational cost (for comparable accuracy) than standard numerical schemes used in the nuclear industry. Finally, two test-cases assess the good behavior of the scheme when approximating vanishing phase solutions.

LA - eng

KW - two-phase flows; entropy-satisfying methods; relaxation techniques; Riemann problem

UR - http://eudml.org/doc/273257

ER -

## References

top- [1] A. Ambroso, C. Chalons, F. Coquel and T. Galié, Relaxation and numerical approximation of a two-fluid two-pressure diphasic model. ESAIM: M2AN 43 (2009) 1063–1097. Zbl05636847MR2588433
- [2] A. Ambroso, C. Chalons, F. Coquel, E. Godlewski, F. Lagoutière, P-A. Raviart and N. Seguin, The coupling of homogeneous models for two-phase flows. Int. J. Finite 4 (2007) 39. Zbl1140.35515MR2465468
- [3] A. Ambroso, C. Chalons and P.-A. Raviart, A Godunov-type method for the seven-equation model of compressible two-phase flow. Comput. Fluids54 (2012) 67–91. Zbl1291.76212MR2972036
- [4] N. Andrianov and G. Warnecke, The Riemann problem for the Baer-Nunziato two-phase flow model. J. Comput. Phys.195 (2004) 434–464. Zbl1115.76414MR2046106
- [5] M.R. Baer and J.W. Nunziato, A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials. Int. J. Multiphase Flow12 (1986) 861–889. Zbl0609.76114
- [6] C. Berthon, F. Coquel and P.G. LeFloch, Why many theories of shock waves are necessary: kinetic relations for non-conservative systems, in vol. 142 of Proc. R. Soc. Edinburgh, Section: A Mathematics (2012) 1–37. Zbl1234.35190MR2887641
- [7] F. Bouchut, Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources. Frontiers in Mathematics. Birkhäuser Verlag, Basel (2004). Zbl1086.65091MR2128209
- [8] F. Bouchut and F. James, Duality solutions for pressureless gases, monotone scalar conservation laws and uniqueness. Commun. Partial Differ. Eqs.24 (1999) 2173–2189. Zbl0937.35098MR1720754
- [9] B. Boutin, F. Coquel and P.G. LeFloch, Coupling nonlinear hyperbolic equations (iii). A regularization method based on thick interfaces. SIAM J. Numer. Anal. 51 (2013) 1108–1133. Zbl06189183MR3038113
- [10] C. Chalons, F. Coquel, S. Kokh and N. Spillane, Large time-step numerical scheme for the seven-equation model of compressible two-phase flows, in vol. 4 of Springer Proceedings in Mathematics, FVCA 6 (2011) 225–233. Zbl1246.76071MR2815642
- [11] G-Q. Chen, C.D. Levermore and T-P. Liu, Hyperbolic conservation laws with stiff relaxation terms and entropy. Commun. Pure Appl. Math.47 (1994) 787–830. Zbl0806.35112MR1280989
- [12] F. Coquel, T. Gallouët, J.-M. Hérard and N. Seguin, Closure laws for a two-fluid two pressure model. C. R. Acad. Sci. I-334 (2002) 927–932. Zbl0999.35057MR1909942
- [13] F. Coquel, E. Godlewski, B. Perthame, A. In and P. Rascle, Some new Godunov and relaxation methods for two-phase flow problems, in Godunov methods (Oxford, 1999). Kluwer/Plenum, New York (2001) 179–188. Zbl1064.76545MR1963591
- [14] F. Coquel, E. Godlewski and N. Seguin, Relaxation of fluid systems. Math. Models Methods Appl. Sci. 22 (2012). Zbl1248.35008MR2928102
- [15] F. Coquel, J.-M. Hérard and K. Saleh, A splitting method for the isentropic Baer-Nunziato two-phase flow model. ESAIM: Proc., 38 (2012) 241–256. Zbl1329.76253MR3006545
- [16] F. Coquel, J.-M. Hérard, K. Saleh and N. Seguin, Two properties of two-velocity two-pressure models for two-phase flows. Commun. Math. Sci. (2013) 11. Zbl1303.35069
- [17] F. Coquel, K. Saleh and N. Seguin, A Robust and Entropy-Satisfying Numerical Scheme for Fluid Flows in Discontinuous Nozzles. http://hal.archives-ouvertes.fr/hal-00795446 (2013). Zbl06322949MR3211117
- [18] V. Deledicque and M.V. Papalexandris, A conservative approximation to compressible two-phase flow models in the stiff mechanical relaxation limit. J. Comput. Phys.227 (2008) 9241–9270. Zbl1202.76146MR2463206
- [19] M. Dumbser, A. Hidalgo, M. Castro, C. Parés and E.F. Toro, FORCE schemes on unstructured meshes II: Non-conservative hyperbolic systems. Comput. Methods Appl. Mech. Engrg.199 (2010) 625–647. Zbl1227.76043MR2796172
- [20] P. Embid and M. Baer, Mathematical analysis of a two-phase continuum mixture theory. Contin. Mech. Thermodyn.4 (1992) 279–312. Zbl0760.76096MR1191989
- [21] T. Gallouët, J.-M. Hérard and N. Seguin, Numerical modeling of two-phase flows using the two-fluid two-pressure approach. Math. Models Methods Appl. Sci.14 (2004) 663–700. Zbl1177.76428MR2057513
- [22] S. Gavrilyuk and R. Saurel, Mathematical and numerical modeling of two-phase compressible flows with micro-inertia. J. Comput. Phys.175 (2002) 326–360. Zbl1039.76067MR1877822
- [23] P. Goatin and P.G. LeFloch, The Riemann problem for a class of resonant hyperbolic systems of balance laws. Ann. Institut. Henri Poincaré Anal. Non Linéaire21 (2004) 881–902. Zbl1086.35069MR2097035
- [24] E. Godlewski and P.-A. Raviart, Numerical approximation of hyperbolic systems of conservation laws, in vol. 118 of Appl. Math. Sci. Springer-Verlag, New York (1996). Zbl0860.65075MR1410987
- [25] B. Hanouzet and R. Natalini, Global existence of smooth solutions for partially dissipative hyperbolic systems with a convex entropy. Arch. Rational Mech. Anal.169 (2003) 89–117. Zbl1037.35041MR2005637
- [26] A. Harten, P.D. Lax and B. van Leer, On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev.25 (1983) 35–61. Zbl0565.65051MR693713
- [27] J.-M. Hérard and O. Hurisse, A fractional step method to compute a class of compressible gas-luiquid flows. Comput. Fluids. Int. J.55 (2012) 57–69. Zbl1291.76217MR2979696
- [28] E. Isaacson and B. Temple, Convergence of the 2 × 2 Godunov method for a general resonant nonlinear balance law. SIAM J. Appl. Math.55 (1995) 625–640. Zbl0838.35075MR1331577
- [29] A.K. Kapila, S.F. Son, J.B. Bdzil, R. Menikoff and D.S. Stewart, Two-phase modeling of DDT: Structure of the velocity-relaxation zone. Phys. Fluids9 (1997) 3885–3897.
- [30] S. Kawashima and W.-A. Yong, Dissipative structure and entropy for hyperbolic systems of balance laws. Archive for Rational Mech. Anal.174 (2004) 345–364. Zbl1065.35187MR2107774
- [31] P.G. LeFloch, Shock waves for nonlinear hyperbolic systems in nonconservative form. Preprint 593, IMA, Minneapolis (1991).
- [32] Y. Liu, Ph.D. thesis. Université Aix-Marseille, to appear in (2013).
- [33] L. Sainsaulieu, Contribution à la modélisation mathématique et numérique des écoulements diphasiques constitués d’un nuage de particules dans un écoulement de gaz. Thèse d’habilitation à diriger des recherches. Université Paris VI (1995).
- [34] K. Saleh, Analyse et Simulation Numérique par Relaxation d’Ecoulements Diphasiques Compressibles. Contribution au Traitement des Phases Evanescentes. Ph.D. thesis. Université Pierre et Marie Curie, Paris VI (2012).
- [35] R. Saurel and R. Abgrall, A multiphase godunov method for compressible multifluid and multiphase flows. J. Comput. Phys.150 (1999) 425–467. Zbl0937.76053MR1684902
- [36] D.W. Schwendeman, C.W. Wahle and A.K. Kapila, The Riemann problem and a high-resolution Godunov method for a model of compressible two-phase flow. J. Comput. Phys.212 (2006) 490–526. Zbl1161.76531MR2187902
- [37] M.D. Thanh, D. Kröner and C. Chalons, A robust numerical method for approximating solutions of a model of two-phase flows and its properties. Appl. Math. Comput.219 (2012) 320–344. Zbl1291.76325MR2949595
- [38] M.D. Thanh, D. Kröner and N.T. Nam, Numerical approximation for a Baer–Nunziato model of two-phase flows. Appl. Numer. Math.61 (2011) 702–721. Zbl05865703MR2772280
- [39] S.A. Tokareva and E.F. Toro, HLLC-type Riemann solver for the Baer-Nunziato equations of compressible two-phase flow. J. Comput. Phys.229 (2010) 3573–3604. Zbl05705265MR2609742
- [40] U.S. NRC: Glossary, Departure from Nucleate Boiling (DNB). http://www.nrc.gov/reading-rm/basic-ref/glossary/departure-from-nucleate-boiling-dnb.html.
- [41] U.S. NRC: Glossary, Loss of Coolant Accident (LOCA). http://www.nrc.gov/reading-rm/basic-ref/glossary/loss-of-coolant-accident-loca.html.
- [42] W-A. Yong, Entropy and global existence for hyperbolic balance laws. Arch. Rational Mech. Anal.172 (2004) 247–266. Zbl1058.35162MR2058165