On metrics of positive Ricci curvature conformal to M × 𝐑 m

Juan Miguel Ruiz

Archivum Mathematicum (2009)

  • Volume: 045, Issue: 2, page 105-113
  • ISSN: 0044-8753

Abstract

top
Let ( M n , g ) be a closed Riemannian manifold and g E the Euclidean metric. We show that for m > 1 , M n × 𝐑 m , ( g + g E ) is not conformal to a positive Einstein manifold. Moreover, M n × 𝐑 m , ( g + g E ) is not conformal to a Riemannian manifold of positive Ricci curvature, through a radial, integrable, smooth function, ϕ : 𝐑 𝐦 𝐑 + , for m > 1 . These results are motivated by some recent questions on Yamabe constants.

How to cite

top

Ruiz, Juan Miguel. "On metrics of positive Ricci curvature conformal to $M\times \mathbf {R}^m$." Archivum Mathematicum 045.2 (2009): 105-113. <http://eudml.org/doc/250676>.

@article{Ruiz2009,
abstract = {Let $(M^n,g)$ be a closed Riemannian manifold and $g_E$ the Euclidean metric. We show that for $m>1$, $\left(M^n \times \mathbf \{R\}^m, (g+g_E)\right)$ is not conformal to a positive Einstein manifold. Moreover, $\left(M^n \times \mathbf \{R\}^m, (g+g_E)\right)$ is not conformal to a Riemannian manifold of positive Ricci curvature, through a radial, integrable, smooth function, $\varphi \colon \mathbf \{R^m\} \rightarrow \mathbf \{R^+\}$, for $m>1$. These results are motivated by some recent questions on Yamabe constants.},
author = {Ruiz, Juan Miguel},
journal = {Archivum Mathematicum},
keywords = {conformally Einstein manifolds; positive Ricci curvature; conformally Einstein manifold; positive Ricci curvature},
language = {eng},
number = {2},
pages = {105-113},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {On metrics of positive Ricci curvature conformal to $M\times \mathbf \{R\}^m$},
url = {http://eudml.org/doc/250676},
volume = {045},
year = {2009},
}

TY - JOUR
AU - Ruiz, Juan Miguel
TI - On metrics of positive Ricci curvature conformal to $M\times \mathbf {R}^m$
JO - Archivum Mathematicum
PY - 2009
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 045
IS - 2
SP - 105
EP - 113
AB - Let $(M^n,g)$ be a closed Riemannian manifold and $g_E$ the Euclidean metric. We show that for $m>1$, $\left(M^n \times \mathbf {R}^m, (g+g_E)\right)$ is not conformal to a positive Einstein manifold. Moreover, $\left(M^n \times \mathbf {R}^m, (g+g_E)\right)$ is not conformal to a Riemannian manifold of positive Ricci curvature, through a radial, integrable, smooth function, $\varphi \colon \mathbf {R^m} \rightarrow \mathbf {R^+}$, for $m>1$. These results are motivated by some recent questions on Yamabe constants.
LA - eng
KW - conformally Einstein manifolds; positive Ricci curvature; conformally Einstein manifold; positive Ricci curvature
UR - http://eudml.org/doc/250676
ER -

References

top
  1. Akutagawa, K., Florit, L., Petean, J., On Yamabe constants of Riemannian products, Comm. Anal. Geom. 15 (5) (2007), 947–969, e-print math. DG/0603486. (2007) Zbl1147.53032MR2403191
  2. Besse, A., Einstein manifolds, Ergeb. Math. Grenzgeb (3), 10, Springer, Berlin, 1987. (1987) Zbl0613.53001MR0867684
  3. Gover, R., Nurowski, P., 10.1016/j.geomphys.2005.03.001, J. Geom. Phys. 56 (2006), 450–484. (2006) Zbl1098.53014MR2171895DOI10.1016/j.geomphys.2005.03.001
  4. Ilias, S., 10.5802/aif.921, Ann. Inst. Fourier (Grenoble) 33 (2), 151–165. MR0699492DOI10.5802/aif.921
  5. Listing, M., 10.1023/A:1011612830580, Ann. Global Anal. Geom. 20 (2001), 183–197. (2001) Zbl1024.53031MR1857177DOI10.1023/A:1011612830580
  6. Listing, M., 10.1016/j.geomphys.2005.02.008, J. Geom. Phys. 56 (2006), 386–404. (2006) Zbl1089.53030MR2171892DOI10.1016/j.geomphys.2005.02.008
  7. Moroianu, A., Ornea, L., Conformally Einstein products and nearly Kähler manifolds, Ann. Global Anal. Geom. 22 (2008 (1)), 11–18, arXiv:math./0610599v3 [math.DG] (2007). (2008 (1)) MR2369184
  8. Obata, M., The conjectures on conformal transformations of Riemannian manifolds, J. Differential Geometry 6 (1971), 247–248. (1971) Zbl0236.53042MR0303464
  9. Petean, J., Isoperimetric regions in spherical cones and Yamabe constants of M × S 1 , Geom. Dedicata (2009), to appear. (2009) Zbl1188.53035MR2576291

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.