On metrics of positive Ricci curvature conformal to
Archivum Mathematicum (2009)
- Volume: 045, Issue: 2, page 105-113
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topRuiz, Juan Miguel. "On metrics of positive Ricci curvature conformal to $M\times \mathbf {R}^m$." Archivum Mathematicum 045.2 (2009): 105-113. <http://eudml.org/doc/250676>.
@article{Ruiz2009,
	abstract = {Let $(M^n,g)$ be a closed Riemannian manifold and $g_E$ the Euclidean metric. We show that for $m>1$, $\left(M^n \times \mathbf \{R\}^m, (g+g_E)\right)$ is not conformal to a positive Einstein manifold. Moreover, $\left(M^n \times \mathbf \{R\}^m, (g+g_E)\right)$ is not conformal to a Riemannian manifold of positive Ricci curvature, through a radial, integrable, smooth function, $\varphi \colon \mathbf \{R^m\} \rightarrow \mathbf \{R^+\}$, for $m>1$. These results are motivated by some recent questions on Yamabe constants.},
	author = {Ruiz, Juan Miguel},
	journal = {Archivum Mathematicum},
	keywords = {conformally Einstein manifolds; positive Ricci curvature; conformally Einstein manifold; positive Ricci curvature},
	language = {eng},
	number = {2},
	pages = {105-113},
	publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
	title = {On metrics of positive Ricci curvature conformal to $M\times \mathbf \{R\}^m$},
	url = {http://eudml.org/doc/250676},
	volume = {045},
	year = {2009},
}
TY  - JOUR
AU  - Ruiz, Juan Miguel
TI  - On metrics of positive Ricci curvature conformal to $M\times \mathbf {R}^m$
JO  - Archivum Mathematicum
PY  - 2009
PB  - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL  - 045
IS  - 2
SP  - 105
EP  - 113
AB  - Let $(M^n,g)$ be a closed Riemannian manifold and $g_E$ the Euclidean metric. We show that for $m>1$, $\left(M^n \times \mathbf {R}^m, (g+g_E)\right)$ is not conformal to a positive Einstein manifold. Moreover, $\left(M^n \times \mathbf {R}^m, (g+g_E)\right)$ is not conformal to a Riemannian manifold of positive Ricci curvature, through a radial, integrable, smooth function, $\varphi \colon \mathbf {R^m} \rightarrow \mathbf {R^+}$, for $m>1$. These results are motivated by some recent questions on Yamabe constants.
LA  - eng
KW  - conformally Einstein manifolds; positive Ricci curvature; conformally Einstein manifold; positive Ricci curvature
UR  - http://eudml.org/doc/250676
ER  - 
References
top- Akutagawa, K., Florit, L., Petean, J., On Yamabe constants of Riemannian products, Comm. Anal. Geom. 15 (5) (2007), 947–969, e-print math. DG/0603486. (2007) Zbl1147.53032MR2403191
- Besse, A., Einstein manifolds, Ergeb. Math. Grenzgeb (3), 10, Springer, Berlin, 1987. (1987) Zbl0613.53001MR0867684
- Gover, R., Nurowski, P., 10.1016/j.geomphys.2005.03.001, J. Geom. Phys. 56 (2006), 450–484. (2006) Zbl1098.53014MR2171895DOI10.1016/j.geomphys.2005.03.001
- Ilias, S., 10.5802/aif.921, Ann. Inst. Fourier (Grenoble) 33 (2), 151–165. MR0699492DOI10.5802/aif.921
- Listing, M., 10.1023/A:1011612830580, Ann. Global Anal. Geom. 20 (2001), 183–197. (2001) Zbl1024.53031MR1857177DOI10.1023/A:1011612830580
- Listing, M., 10.1016/j.geomphys.2005.02.008, J. Geom. Phys. 56 (2006), 386–404. (2006) Zbl1089.53030MR2171892DOI10.1016/j.geomphys.2005.02.008
- Moroianu, A., Ornea, L., Conformally Einstein products and nearly Kähler manifolds, Ann. Global Anal. Geom. 22 (2008 (1)), 11–18, arXiv:math./0610599v3 [math.DG] (2007). (2008 (1)) MR2369184
- Obata, M., The conjectures on conformal transformations of Riemannian manifolds, J. Differential Geometry 6 (1971), 247–248. (1971) Zbl0236.53042MR0303464
- Petean, J., Isoperimetric regions in spherical cones and Yamabe constants of , Geom. Dedicata (2009), to appear. (2009) Zbl1188.53035MR2576291
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.
 
 