Fundamental group of with no circle action
Archivum Mathematicum (2009)
- Volume: 045, Issue: 1, page 75-78
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topKędra, Jarek. "Fundamental group of $\operatorname{Symp}(M,\omega )$ with no circle action." Archivum Mathematicum 045.1 (2009): 75-78. <http://eudml.org/doc/250677>.
@article{Kędra2009,
abstract = {We show that $\pi _1(\operatorname\{Symp\}(M, \omega ))$ can be nontrivial for $M$ that does not admit any symplectic circle action.},
author = {Kędra, Jarek},
journal = {Archivum Mathematicum},
keywords = {symplectomorphism; circle action; symplectomorphism; circle action},
language = {eng},
number = {1},
pages = {75-78},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Fundamental group of $\operatorname\{Symp\}(M,\omega )$ with no circle action},
url = {http://eudml.org/doc/250677},
volume = {045},
year = {2009},
}
TY - JOUR
AU - Kędra, Jarek
TI - Fundamental group of $\operatorname{Symp}(M,\omega )$ with no circle action
JO - Archivum Mathematicum
PY - 2009
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 045
IS - 1
SP - 75
EP - 78
AB - We show that $\pi _1(\operatorname{Symp}(M, \omega ))$ can be nontrivial for $M$ that does not admit any symplectic circle action.
LA - eng
KW - symplectomorphism; circle action; symplectomorphism; circle action
UR - http://eudml.org/doc/250677
ER -
References
top- Ahara, K., Hattori, A., -dimensional symplectic -manifolds admitting moment map, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 38 (2) (1991), 251–298. (1991) MR1127083
- Anjos, S., 10.2140/gt.2002.6.195, Geom. Topol. 6 (2002), 195–218, (electronic). (2002) Zbl1023.57021MR1914568DOI10.2140/gt.2002.6.195
- Audin, M., Torus actions on symplectic manifolds, Progress in Mathematics, vol. 93, Birkhäuser Verlag, Basel, revised edition, 2004. (2004) Zbl1062.57040MR2091310
- Baldridge, S., 10.2140/pjm.2004.217.1, Pacific J. Math. 217 (1) (2004), 1–10. (2004) Zbl1071.57027MR2105762DOI10.2140/pjm.2004.217.1
- Karshon, Y., Periodic Hamiltonian flows on four-dimensional manifolds, Mem. Amer. Math. Soc. 141 (672) (1999), viii+71. (1999) Zbl0982.70011MR1612833
- Kędra, J., 10.1090/S0002-9939-04-07507-0, Proc. Amer. Math. Soc. 133 (1) (2005), 305–312, (electronic). (2005) Zbl1053.55011MR2086223DOI10.1090/S0002-9939-04-07507-0
- Lalonde, F., Pinsonnault, M., 10.1215/S0012-7094-04-12223-7, Duke Math. J. 122 (2) (2004), 347–397. (2004) Zbl1063.57023MR2053755DOI10.1215/S0012-7094-04-12223-7
- McDuff, D., Symplectomorphism Groups and almost Complex Structures, In: Essays on geometry and related topics, Vol. 1, 2, 2001, volume 38 of Monogr. Enseign. Math., pp. 527–556. (2001) Zbl1010.53064MR1929338
- McDuff, D., 10.1007/s10711-007-9175-3, Geom. Dedicata 132 (2008), 1–29. (2008) Zbl1155.53055MR2396906DOI10.1007/s10711-007-9175-3
- McDuff, D., Salamon, D., Introduction to symplectic topology, Oxford Math. Monogr. (1998), Second edition. (1998) MR1702941
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.