Fundamental group of Symp ( M , ω ) with no circle action

Jarek Kędra

Archivum Mathematicum (2009)

  • Volume: 045, Issue: 1, page 75-78
  • ISSN: 0044-8753

Abstract

top
We show that π 1 ( Symp ( M , ω ) ) can be nontrivial for M that does not admit any symplectic circle action.

How to cite

top

Kędra, Jarek. "Fundamental group of $\operatorname{Symp}(M,\omega )$ with no circle action." Archivum Mathematicum 045.1 (2009): 75-78. <http://eudml.org/doc/250677>.

@article{Kędra2009,
abstract = {We show that $\pi _1(\operatorname\{Symp\}(M, \omega ))$ can be nontrivial for $M$ that does not admit any symplectic circle action.},
author = {Kędra, Jarek},
journal = {Archivum Mathematicum},
keywords = {symplectomorphism; circle action; symplectomorphism; circle action},
language = {eng},
number = {1},
pages = {75-78},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Fundamental group of $\operatorname\{Symp\}(M,\omega )$ with no circle action},
url = {http://eudml.org/doc/250677},
volume = {045},
year = {2009},
}

TY - JOUR
AU - Kędra, Jarek
TI - Fundamental group of $\operatorname{Symp}(M,\omega )$ with no circle action
JO - Archivum Mathematicum
PY - 2009
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 045
IS - 1
SP - 75
EP - 78
AB - We show that $\pi _1(\operatorname{Symp}(M, \omega ))$ can be nontrivial for $M$ that does not admit any symplectic circle action.
LA - eng
KW - symplectomorphism; circle action; symplectomorphism; circle action
UR - http://eudml.org/doc/250677
ER -

References

top
  1. Ahara, K., Hattori, A., 4 -dimensional symplectic S 1 -manifolds admitting moment map, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 38 (2) (1991), 251–298. (1991) MR1127083
  2. Anjos, S., 10.2140/gt.2002.6.195, Geom. Topol. 6 (2002), 195–218, (electronic). (2002) Zbl1023.57021MR1914568DOI10.2140/gt.2002.6.195
  3. Audin, M., Torus actions on symplectic manifolds, Progress in Mathematics, vol. 93, Birkhäuser Verlag, Basel, revised edition, 2004. (2004) Zbl1062.57040MR2091310
  4. Baldridge, S., 10.2140/pjm.2004.217.1, Pacific J. Math. 217 (1) (2004), 1–10. (2004) Zbl1071.57027MR2105762DOI10.2140/pjm.2004.217.1
  5. Karshon, Y., Periodic Hamiltonian flows on four-dimensional manifolds, Mem. Amer. Math. Soc. 141 (672) (1999), viii+71. (1999) Zbl0982.70011MR1612833
  6. Kędra, J., 10.1090/S0002-9939-04-07507-0, Proc. Amer. Math. Soc. 133 (1) (2005), 305–312, (electronic). (2005) Zbl1053.55011MR2086223DOI10.1090/S0002-9939-04-07507-0
  7. Lalonde, F., Pinsonnault, M., 10.1215/S0012-7094-04-12223-7, Duke Math. J. 122 (2) (2004), 347–397. (2004) Zbl1063.57023MR2053755DOI10.1215/S0012-7094-04-12223-7
  8. McDuff, D., Symplectomorphism Groups and almost Complex Structures, In: Essays on geometry and related topics, Vol. 1, 2, 2001, volume 38 of Monogr. Enseign. Math., pp. 527–556. (2001) Zbl1010.53064MR1929338
  9. McDuff, D., 10.1007/s10711-007-9175-3, Geom. Dedicata 132 (2008), 1–29. (2008) Zbl1155.53055MR2396906DOI10.1007/s10711-007-9175-3
  10. McDuff, D., Salamon, D., Introduction to symplectic topology, Oxford Math. Monogr. (1998), Second edition. (1998) MR1702941

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.