On the prime graphs of the automorphism groups of sporadic simple groups
Archivum Mathematicum (2009)
- Volume: 045, Issue: 2, page 83-94
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topKhosravi, Behrooz. "On the prime graphs of the automorphism groups of sporadic simple groups." Archivum Mathematicum 045.2 (2009): 83-94. <http://eudml.org/doc/250678>.
@article{Khosravi2009,
abstract = {In this paper as the main result, we determine finite groups with the same prime graph as the automorphism group of a sporadic simple group, except $J_2$.},
author = {Khosravi, Behrooz},
journal = {Archivum Mathematicum},
keywords = {automorphism group of a sporadic simple group; prime graph; automorphism groups; sporadic simple groups; prime graphs; sets of element orders; numbers of connected components},
language = {eng},
number = {2},
pages = {83-94},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {On the prime graphs of the automorphism groups of sporadic simple groups},
url = {http://eudml.org/doc/250678},
volume = {045},
year = {2009},
}
TY - JOUR
AU - Khosravi, Behrooz
TI - On the prime graphs of the automorphism groups of sporadic simple groups
JO - Archivum Mathematicum
PY - 2009
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 045
IS - 2
SP - 83
EP - 94
AB - In this paper as the main result, we determine finite groups with the same prime graph as the automorphism group of a sporadic simple group, except $J_2$.
LA - eng
KW - automorphism group of a sporadic simple group; prime graph; automorphism groups; sporadic simple groups; prime graphs; sets of element orders; numbers of connected components
UR - http://eudml.org/doc/250678
ER -
References
top- Chen, Z. M., Shi, W. J., On simple groups, J. Southwest China Teachers Univ. 18 (3) (1993), 249–256. (1993)
- Chigira, N., Iiyori, N., Yamaki, H., 10.1007/s002229900040, Invent. Math. 139 (2000), 525–539. (2000) Zbl0961.20017MR1738059DOI10.1007/s002229900040
- Conway, J., Curtis, R., Norton, S., Parker, R., Wilson, R., Atlas of finite groups, Clarendon Press, Oxford, 1985. (1985) Zbl0568.20001
- Crescenzo, P., 10.1016/0001-8708(75)90083-3, Adv. Math. 17 (1975), 25–29. (1975) Zbl0305.10016MR0371812DOI10.1016/0001-8708(75)90083-3
- Gorenstein, D., Finite groups, Harper and Row, New York, 1968. (1968) Zbl0185.05701MR0231903
- Gruenberg, K. W., Roggenkamp, K. W., Decomposition of the augmentation ideal and of the relation modules of a finite group, Proc. London Math. Soc. (3) 31 (2) (1975), 149–166. (1975) Zbl0313.20004MR0374247
- Hagie, M., 10.1081/AGB-120022800, Comm. Algebra 31 (9) (2003), 4405–4424. (2003) Zbl1031.20009MR1995543DOI10.1081/AGB-120022800
- Iranmanesh, A., Alavi, S. H., Khosravi, B., 10.1016/S0022-4049(01)00113-X, J. Pure Appl. Algebra 170 (2-3) (2002), 243–254. (2002) Zbl1001.20005MR1904845DOI10.1016/S0022-4049(01)00113-X
- Janson, C., Lux, K., Parker, R. A., Wilson, R. A., An atlas of Brauer characters, Clarendon Press, Oxford, 1995. (1995) MR1367961
- Khosravi, A., Khosravi, B., 10.1142/S021949880200015X, J. Algebra Appl. 1 (3) (2002), 267–279. (2002) Zbl1033.20013MR1932151DOI10.1142/S021949880200015X
- Khosravi, B., 10.1142/S0219498808003090, J Algebra Appl. 7 (6) (2008), 735–748. (2008) MR2483329DOI10.1142/S0219498808003090
- Mazurov, V. D., 10.1007/BF02671951, Algebra and Logic 36 (1) (1997), 23–32. (1997) MR1454690DOI10.1007/BF02671951
- Mazurov, V. D., 10.1007/BF02671691, Algebra and Logic 37 (6) (1998), 371–379. (1998) Zbl0917.20021MR1680412DOI10.1007/BF02671691
- Praeger, C. E., Shi, W. J., A characterization of some alternating and symmetric grops, 22 (5) (1994), 1507–1530. (1994) MR1264726
- Shi, W., Bi, J., 10.1007/BFb0100738, Lecture Notes in Math. 1456 (1990), 171–180. (1990) Zbl0718.20009MR1092230DOI10.1007/BFb0100738
- Zsigmondy, K., Zur Theorie der Potenzreste, Monatsh. Math. Phys. 3 (1892), 265–284. (1892) MR1546236
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.