Equivalent formulation and numerical analysis of a fire confinement problem
ESAIM: Control, Optimisation and Calculus of Variations (2010)
- Volume: 16, Issue: 4, page 974-1001
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topReferences
top- L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford University Press (2000).
- J.P. Aubin and A. Cellina, Differential Inclusions. Springer-Verlag, Berlin (1984).
- A. Bressan, Differential inclusions and the control of forest fires. J. Differ. Equ.243 (2007) 179–207 (special volume in honor of A. Cellina and J. Yorke).
- A. Bressan and C. De Lellis, Existence of optimal strategies for a fire confinement problem. Comm. Pure Appl. Math.62 (2009) 789–830.
- A. Bressan and T. Wang, The minimum speed for a blocking problem on the half plane. J. Math. Anal. Appl.356 (2009) 133–144.
- A. Bressan, M. Burago, A. Friend and J. Jou, Blocking strategies for a fire control problem. Anal. Appl.6 (2008) 229–246.
- C. De Lellis, Rectifiable Sets, Densities and Tangent Measures, Zürich Lectures in Advanced Mathematics. EMS Publishing House (2008).
- H. Federer, Geometric Measure Theory. Springer-Verlag, New York (1969).
- M. Henle, A Combinatorial Introduction to Topology. W.H. Freeman, San Francisco (1979).
- K. Kuratovski. Topology, Vol. II. Academic Press, New York (1968).
- W.S. Massey, A Basic Course in Algebraic Topology. Springer-Verlag, New York (1991).
- J. Nocedal and S.J. Wright. Numerical Optimization. Springer, New York (2006).