Nonlinear feedback stabilization of a two-dimensional Burgers equation
Laetitia Thevenet; Jean-Marie Buchot; Jean-Pierre Raymond
ESAIM: Control, Optimisation and Calculus of Variations (2010)
- Volume: 16, Issue: 4, page 929-955
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topReferences
top- M. Badra, Stabilisation par feedback et approximation des équations de Navier-Stokes. Ph.D. Thesis, Université Paul Sabatier, Toulouse, France (2006).
- M. Badra, Lyapunov function and local feedback boundary stabilization of the Navier-Stokes equations. SIAM J. Control. (to appear).
- S.C. Beeler, H.T. Tran and H.T. Banks, Feedback control methodologies for nonlinear systems. J. Optim. Theory Appl.107 (2000) 1–33.
- F. Ben Belgacem, H. El Fekik and J.-P. Raymond, A penalized Robin approach for solving a parabolic equation with non smooth Dirichlet boundary conditions. Asymptotic Anal.34 (2003) 121–136.
- A. Bensoussan, G. Da Prato, M.C. Delfour and S.K. Mitter, Representation and Control of Infinite Dimensional Systems, Vol. 1. Birkhäuser (1992).
- A. Bensoussan, G. Da Prato, M.C. Delfour and S.K. Mitter, Representation and Control of Infinite Dimensional Systems, Vol. 2. Birkhäuser (1993).
- E. Fernandez-Cara, S. Guerrero, O. Yu. Imanuvilov and J.-P. Puel, Local exact controllability of the Navier-Stokes system. J. Math. Pures Appl.83 (2004) 1501–1542.
- E. Fernandez-Cara, M. Gonzalez-Burgos, S. Guerrero and J.-P. Puel, Exact controllability to the trajectories of the heat equation with Fourier boundary conditions: the semilinear case. ESAIM: COCV12 (2006) 466–483 (electronic).
- G. Grubb and V.A. Solonnikov, Boundary value problems for the nonstationary Navier-Stokes equations treated by pseudo-differential methods. Math. Scand.69 (1991) 217–290.
- L. Hormander, Lectures on Nonlinear Hyperbolic Differential Equations. Springer (1997).
- M. Krstic, L. Magnis and R. Vazquez, Nonlinear stabilization of shock-like unstable equilibria in the viscous Burgers PDE. IEEE Trans. Automat. Contr.53 (2008) 1678–1683.
- I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations, Vol. 1. Cambridge University Press (2000).
- A.J. Laub, A Schur method method for solving algebraic Riccati equations. IEEE Trans. Automat. Contr.24 (1979) 913–921.
- J.-L. Lions, Espaces d'interpolation et domaines de puissances fractionnaires d'opérateurs. J. Math. Soc. Japan14 (1962) 233–241.
- J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes, Vol. 2. Dunod, Paris (1968).
- J.-P. Raymond, Boundary feedback stabilization of the two dimensional Navier-Stokes equations. SIAM J. Control Optim.45 (2006) 790–828.