Bounds for the first Dirichlet eigenvalue of triangles and quadrilaterals
Pedro Freitas; Batłomiej Siudeja
ESAIM: Control, Optimisation and Calculus of Variations (2010)
- Volume: 16, Issue: 3, page 648-676
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topFreitas, Pedro, and Siudeja, Batłomiej. "Bounds for the first Dirichlet eigenvalue of triangles and quadrilaterals." ESAIM: Control, Optimisation and Calculus of Variations 16.3 (2010): 648-676. <http://eudml.org/doc/250741>.
@article{Freitas2010,
abstract = {
We prove some new upper and lower bounds for the first Dirichlet
eigenvalue of triangles and quadrilaterals. In particular, we improve
Pólya and Szegö's [Annals of Mathematical Studies 27 (1951)] lower bound for quadrilaterals and extend
Hersch's [Z. Angew. Math. Phys. 17 (1966) 457–460] upper bound for parallelograms to general quadrilaterals.
},
author = {Freitas, Pedro, Siudeja, Batłomiej},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Dirichlet eigenvalues; polygons; variational bounds},
language = {eng},
month = {7},
number = {3},
pages = {648-676},
publisher = {EDP Sciences},
title = {Bounds for the first Dirichlet eigenvalue of triangles and quadrilaterals},
url = {http://eudml.org/doc/250741},
volume = {16},
year = {2010},
}
TY - JOUR
AU - Freitas, Pedro
AU - Siudeja, Batłomiej
TI - Bounds for the first Dirichlet eigenvalue of triangles and quadrilaterals
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2010/7//
PB - EDP Sciences
VL - 16
IS - 3
SP - 648
EP - 676
AB -
We prove some new upper and lower bounds for the first Dirichlet
eigenvalue of triangles and quadrilaterals. In particular, we improve
Pólya and Szegö's [Annals of Mathematical Studies 27 (1951)] lower bound for quadrilaterals and extend
Hersch's [Z. Angew. Math. Phys. 17 (1966) 457–460] upper bound for parallelograms to general quadrilaterals.
LA - eng
KW - Dirichlet eigenvalues; polygons; variational bounds
UR - http://eudml.org/doc/250741
ER -
References
top- P. Antunes and P. Freitas, New bounds for the principal Dirichlet eigenvalue of planar regions. Experiment. Math.15 (2006) 333–342.
- P. Antunes and P. Freitas, A numerical study of the spectral gap. J. Phys. A41 (2008) 055201.
- D. Borisov and P. Freitas, Singular asymptotic expansions for Dirichlet eigenvalues and eigenfunctions on thin planar domains. Ann. Inst. H. Poincaré Anal. Non Linéaire26 (2009) 547–560.
- P. Freitas, Upper and lower bounds for the first Dirichlet eigenvalue of a triangle. Proc. Amer. Math. Soc.134 (2006) 2083–2089.
- P. Freitas, Precise bounds and asymptotics for the first Dirichlet eigenvalue of triangles and rhombi. J. Funct. Anal.251 (2007) 376–398.
- J. Hersch, Constraintes rectilignes parallèles et valeurs propres de membranes vibrantes. Z. Angew. Math. Phys.17 (1966) 457–460.
- W. Hooker and M.H. Protter, Bounds for the first eigenvalue of a rhombic membrane. J. Math. Phys.39 (1960/1961) 18–34.
- E. Makai, On the principal frequency of a membrane and the torsional rigidity of a beam, in Studies in mathematical analysis and related topics, Essays in honor of George Pólya, Stanford Univ. Press, Stanford (1962) 227–231.
- P.J. Méndez-Hernández, Brascamp-Lieb-Luttinger inequalities for convex domains of finite inradius. Duke Math. J.113 (2002) 93–131.
- G. Pólya and G. Szegö, Isoperimetric inequalities in mathematical physics, Annals of Mathematical Studies27. Princeton University Press, Princeton (1951).
- M.H. Protter, A lower bound for the fundamental frequency of a convex region. Proc. Amer. Math. Soc.81 (1981) 65–70.
- C.K. Qu and R. Wong, “Best possible” upper and lower bounds for the zeros of the Bessel fuction Jv(x). Trans. Amer. Math. Soc.351 (1999) 2833–2859.
- B. Siudeja, Sharp bounds for eigenvalues of triangles. Michigan Math. J.55 (2007) 243–254.
- B. Siudeja, Isoperimetric inequalities for eigenvalues of triangles. Ind. Univ. Math. J. (to appear).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.