Unbounded viscosity solutions of hybrid control systems
Guy Barles; Sheetal Dharmatti; Mythily Ramaswamy
ESAIM: Control, Optimisation and Calculus of Variations (2010)
- Volume: 16, Issue: 1, page 176-193
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topReferences
top- A. Back, J. Gukenheimer and M. Myers, A dynamical simulation facility for hybrid systems, in Workshop on Theory of Hybrid Systems, R.L. Grossman, A. Nerode, A.P. Rava and H. Rischel Eds., Lect. Notes Comput. Sci.736, Springer, New York (1993) 255–267.
- G. Barles, Solutions de viscosité des équations de Hamilton Jacobi, Mathématiques et Applications17. Springer, Paris (1994).
- G. Barles, S. Biton and O. Ley, Uniqueness for Parabolic equations without growth condition and applications to the mean curvature flow in . J. Differ. Equ.187 (2003) 456–472.
- M. Bardi and C. Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations. Birkhauser, Boston (1997).
- M.S. Branicky, Studies in hybrid systems: Modeling, analysis and control. Ph.D. Dissertation, Dept. Elec. Eng. Computer Sci., MIT Cambridge, USA (1995).
- M.S. Branicky, V. Borkar and S. Mitter, A unified framework for hybrid control problem. IEEE Trans. Automat. Contr.43 (1998) 31–45.
- M.G. Crandall, H. Ishii and P.L. Lions, User's guide to viscosity solutions of second order partial differential equations. Bull. Amer. Soc.27 (1992) 1–67.
- S. Dharmatti and M. Ramaswamy, Hybrid control system and viscosity solutions. SIAM J. Contr. Opt.34 (2005) 1259–1288.
- S. Dharmatti and M. Ramaswamy, Zero sum differential games involving hybrid controls. J. Optim. Theory Appl.128 (2006) 75–102.
- N.G. Galbraith and R.B. Vinter, Optimal control of hybrid systems with an infinite set of discrete states. J. Dyn. Contr. Syst.9 (2003) 563–584.
- O. Ley, Lower-bound gradient estimates for first-order Hamilton-Jacobi equations and applications to the regularity of propagating fronts. Adv. Differ. Equ.6 (2001) 547–576.
- P.P. Varaiya, Smart cars on smart roads: problems of control. IEEE Trans. Automat. Contr.38 (1993) 195–207.