A class of impulsive pulse-width sampler systems and its steady-state control in infinite dimensional spaces.
The paper presents a method to determine a Lyapunov functional for a linear time-invariant system with an interval timevarying delay. The functional is constructed for the system with a time-varying delay with a given time derivative, which is calculated on the system trajectory. The presented method gives analytical formulas for the coefficients of the Lyapunov functional.
A mathematical model for fluid and solute transport in peritoneal dialysis is constructed. The model is based on a threecomponent nonlinear system of two-dimensional partial differential equations for fluid, glucose and albumin transport with the relevant boundary and initial conditions. Our aim is to model ultrafiltration of water combined with inflow of glucose to the tissue and removal of albumin from the body during dialysis, by finding the spatial distributions of glucose and albumin concentrations...
A new modified state variable diagram method is proposed for determination of positive realizations of linear continuoustime systems with delays in state and input vectors. Using the method, it is possible to find a positive realization with reduced numbers of delays for a given transfer matrix. Sufficient conditions for the existence of positive realizations of given proper transfer matrices are established. The proposed method is demonstrated on numerical examples.
In this paper, a modified van der Pol equation is considered as a description of the heart action. This model has a number of interesting properties allowing reconstruction of phenomena observed in physiological experiments as well as in Holter electrocardiographic recordings. Our aim is to study periodic solutions of the modified van der Pol equation and take into consideration the influence of feedback and delay which occur in the normal heart action mode as well as in pathological modes. Usage...
This paper is concerned with the stabilisation of linear time-delay systems by tuning a finite number of parameters. Such problems typically arise in the design of fixed-order controllers. As time-delay systems exhibit an infinite amount of characteristic roots, a full assignment of the spectrum is impossible. However, if the system is stabilisable for the given parameter set, stability can in principle always be achieved through minimising the real part of the rightmost characteristic root, or...
This paper is concerned with the stabilisation of linear time-delay systems by tuning a finite number of parameters. Such problems typically arise in the design of fixed-order controllers. As time-delay systems exhibit an infinite amount of characteristic roots, a full assignment of the spectrum is impossible. However, if the system is stabilisable for the given parameter set, stability can in principle always be achieved through minimising the real part of the rightmost characteristic...
The central part in the process of solving the observer problem for nonlinear systems is to find a solution of a partial differential equation of first order. The original method proposed to solve this equation used expansions into Taylor polynomials, however, it suffers from rather restrictive assumptions while the approach proposed here allows to generalize these requirements. Its characteristic feature is that it is based on the application of the Finite Element Method. An illustrating example...
A realization problem for positive, continuous-time linear systems with reduced numbers of delays in state and in control is formulated and solved. Sufficient conditions for the existence of positive realizations with reduced numbers of delays of a given proper transfer function are established. A procedure for the computation of positive realizations with reduced numbers of delays is presented and illustrated by an example.
This short paper deals with the classical finite-horizon linear-quadratic regulator problem with the terminal state constrained to be zero, for both continuous and discrete-time systems. Closed-form expressions for the optimal state and costate trajectories of the Hamiltonian system, as well as the corresponding control law, are derived through the solutions of two infinite- horizon LQ problems, thus avoiding the use of the Riccati differential equation. The computation of the optimal value of the...
In this paper, we study decentralized feedback control systems with quantized signals in local input-output (control) channels. We first assume that a decentralized output feedback controller has been designed for a multi-channel continuous-time system so that the closed-loop system is Hurwitz stable and a desired disturbance attenuation level is achieved. However, since the local measurement outputs are quantized by a general quantizer before they are passed to the controller, the system’s...
This paper considers the problem of swinging up the Furuta pendulum and proposes a new smooth nonlinear swing up controller based on the concept of energy. This new controller results from the Total Energy Control System (TECS) approach in conjunction with a linearizing feedback controller. The new controller commands to the desired reference the total energy rate of the Furuta pendulum; thus, the Furuta pendulum oscillates and reaches a neighborhood of its unstable configuration while the rotation...
This paper deals with the application of a variable structure observer developed for a class of nonlinear systems to solve the trajectory tracking problem for rigid robot manipulators. The analyzed approach to observer design proposes a simple design methodology for systems having completely observable linear parts and bounded nonlinearities andor uncertainties. This observer is basically the conventional Luenberger observer with an additional switching term that is used to guarantee robustness...