# An a priori Campanato type regularity condition for local minimisers in the calculus of variations

ESAIM: Control, Optimisation and Calculus of Variations (2010)

- Volume: 16, Issue: 1, page 111-131
- ISSN: 1292-8119

## Access Full Article

top## Abstract

top## How to cite

topDodd, Thomas J.. "An a priori Campanato type regularity condition for local minimisers in the calculus of variations." ESAIM: Control, Optimisation and Calculus of Variations 16.1 (2010): 111-131. <http://eudml.org/doc/250743>.

@article{Dodd2010,

abstract = {
An a priori Campanato type regularity condition is established for a class of W1X local minimisers $\overline\{u\}$ of the general variational integral
$ \int_\{\Omega\} F(\nabla u(x))\,\{\rm d\}x$
where $\Omega \subset \mathbb\{R\}^n$ is an open bounded domain, F is of class C2, F is strongly quasi-convex and satisfies the growth condition$ F(\xi)\leq c(1+|\xi|^p)$
for a p > 1 and where the corresponding Banach spaces X are the Morrey-Campanato space $\mathcal\{L\}^\{p,\mu\} (\Omega,\mathbb\{R\}^\{N\times n\})$, µ < n, Campanato space $\mathcal\{L\}^\{p,n\}(\Omega,\mathbb\{R\}^\{N\times n\})$ and the space of bounded mean oscillation $ \{\rm BMO\} \Omega,\mathbb\{R\}^\{N\times n\})$. The admissible maps $u\colon \Omega \to \mathbb\{R\}^N$ are of Sobolev class W1,p, satisfying a Dirichlet boundary condition, and to help clarify the significance of the above result the sufficiency condition for W1BMO local minimisers is extended from Lipschitz maps to this admissible class.
},

author = {Dodd, Thomas J.},

journal = {ESAIM: Control, Optimisation and Calculus of Variations},

keywords = {Calculus of variations; local minimiser; partial regularity; strong quasiconvexity; Campanato space; Morrey space; Morrey-Campanato space; space of bounded mean oscillation; extremals; positive second variation; calculus of variations},

language = {eng},

month = {1},

number = {1},

pages = {111-131},

publisher = {EDP Sciences},

title = {An a priori Campanato type regularity condition for local minimisers in the calculus of variations},

url = {http://eudml.org/doc/250743},

volume = {16},

year = {2010},

}

TY - JOUR

AU - Dodd, Thomas J.

TI - An a priori Campanato type regularity condition for local minimisers in the calculus of variations

JO - ESAIM: Control, Optimisation and Calculus of Variations

DA - 2010/1//

PB - EDP Sciences

VL - 16

IS - 1

SP - 111

EP - 131

AB -
An a priori Campanato type regularity condition is established for a class of W1X local minimisers $\overline{u}$ of the general variational integral
$ \int_{\Omega} F(\nabla u(x))\,{\rm d}x$
where $\Omega \subset \mathbb{R}^n$ is an open bounded domain, F is of class C2, F is strongly quasi-convex and satisfies the growth condition$ F(\xi)\leq c(1+|\xi|^p)$
for a p > 1 and where the corresponding Banach spaces X are the Morrey-Campanato space $\mathcal{L}^{p,\mu} (\Omega,\mathbb{R}^{N\times n})$, µ < n, Campanato space $\mathcal{L}^{p,n}(\Omega,\mathbb{R}^{N\times n})$ and the space of bounded mean oscillation $ {\rm BMO} \Omega,\mathbb{R}^{N\times n})$. The admissible maps $u\colon \Omega \to \mathbb{R}^N$ are of Sobolev class W1,p, satisfying a Dirichlet boundary condition, and to help clarify the significance of the above result the sufficiency condition for W1BMO local minimisers is extended from Lipschitz maps to this admissible class.

LA - eng

KW - Calculus of variations; local minimiser; partial regularity; strong quasiconvexity; Campanato space; Morrey space; Morrey-Campanato space; space of bounded mean oscillation; extremals; positive second variation; calculus of variations

UR - http://eudml.org/doc/250743

ER -

## References

top- E. Acerbi and N. Fusco, A regularity theorem for quasiconvex integrals. Arch. Ration. Mech. Anal.99 (1987) 261–281. Zbl0627.49007
- E. Acerbi and N. Fusco, Local regularity for minimizers of non convex integrals. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)16 (1989) 603–636. Zbl0829.49025
- E. Acerbi and N. Fusco, Regularity for minimizers of non-quadratic functionals: the case 1 < p < 2. J. Math. Anal. Appl.140 (1989) 115–135. Zbl0686.49004
- S. Campanato, Proprietà di hölderianità di alcune classi di funzioni. Ann. Scuola Norm. Sup. Pisa (3)17 (1963) 175–188.
- M. Carozza and A. Passarelli di Napoli, Partial regularity of local minimisers of quasiconvex integrals with sub-quadratic growth. Proc. Roy. Soc. Edinburgh133 (2003) 1249–1262. Zbl1059.49033
- M. Carozza, N. Fusco and G. Mingione, Partial regularity of minimisers of quasiconvex integrals with subquadratic growth. Ann. Mat. Pura Appl.175 (1998) 141–164. Zbl0960.49025
- F. Duzaar, J.F. Grotowski and M. Kronz, Regularity of almost minimizers of quasi-convex variational integrals with subquadratic growth. Ann. Mat. Pura Appl.184 (2005) 421–448. Zbl1223.49040
- L.C. Evans, Quasiconvexity and partial regularity in the calculus of variations. Arch. Ration. Mech. Anal.95 (1986) 227–252. Zbl0627.49006
- C. Fefferman and E.M. Stein, Hp spaces of several variables. Acta Math.129 (1972) 137–193. Zbl0257.46078
- N.B. Firoozye, Positive second variation and local minimisers in BMO-Sobolev spaces. SFB 256: Preprint No. 252, University of Bonn, Germany (1992).
- E. Giusti, Direct methods in the calculus of variations. World Scientific Publishing, Singapore (2003). Zbl1028.49001
- E. Giusti and M. Miranda, Sulla regolaritá delle soluzioni di una classe di sistemi ellittici quasi-lineari. Arch. Ration. Mech. Anal.31 (1968) 173–184. Zbl0167.10703
- Y. Grabovsky and T. Mengesha, Direct approach to the problem of strong local minima in calculus of variations. Calc. Var. Partial Differential Equations29 (2007) 59–83. Zbl1112.49015
- F. John and L. Nirenberg, On functions of bounded mean oscillation. Comm. Pure Appl. Math.14 (1961) 415–426. Zbl0102.04302
- J. Kristensen and A. Taheri, Partial regularity of strong local minimizers in the multi-dimensional calculus of variations. Arch. Ration. Mech. Anal.170 (2003) 63–89. Zbl1030.49040
- R. Moser, Vanishing mean oscillation and regularity in the calculus of variations. Preprint No. 96, MPI for Mathematics in the Sciences, Leipzig, Germany (2001).
- S. Müller and V. Šverák, Convex integration for Lipschitz mappings and counterexamples to regularity. Ann. Math.157 (2003) 715–742. Zbl1083.35032

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.