An a priori Campanato type regularity condition for local minimisers in the calculus of variations

Thomas J. Dodd

ESAIM: Control, Optimisation and Calculus of Variations (2010)

  • Volume: 16, Issue: 1, page 111-131
  • ISSN: 1292-8119

Abstract

top
An a priori Campanato type regularity condition is established for a class of W1X local minimisers u ¯ of the general variational integral Ω F ( u ( x ) ) d x where Ω n is an open bounded domain, F is of class C2, F is strongly quasi-convex and satisfies the growth condition F ( ξ ) c ( 1 + | ξ | p ) for a p > 1 and where the corresponding Banach spaces X are the Morrey-Campanato space p , μ ( Ω , N × n ) , µ < n, Campanato space p , n ( Ω , N × n ) and the space of bounded mean oscillation BMO Ω , N × n ) . The admissible maps u : Ω N are of Sobolev class W1,p, satisfying a Dirichlet boundary condition, and to help clarify the significance of the above result the sufficiency condition for W1BMO local minimisers is extended from Lipschitz maps to this admissible class.

How to cite

top

Dodd, Thomas J.. "An a priori Campanato type regularity condition for local minimisers in the calculus of variations." ESAIM: Control, Optimisation and Calculus of Variations 16.1 (2010): 111-131. <http://eudml.org/doc/250743>.

@article{Dodd2010,
abstract = { An a priori Campanato type regularity condition is established for a class of W1X local minimisers $\overline\{u\}$ of the general variational integral $ \int_\{\Omega\} F(\nabla u(x))\,\{\rm d\}x$ where $\Omega \subset \mathbb\{R\}^n$ is an open bounded domain, F is of class C2, F is strongly quasi-convex and satisfies the growth condition$ F(\xi)\leq c(1+|\xi|^p)$ for a p > 1 and where the corresponding Banach spaces X are the Morrey-Campanato space $\mathcal\{L\}^\{p,\mu\} (\Omega,\mathbb\{R\}^\{N\times n\})$, µ < n, Campanato space $\mathcal\{L\}^\{p,n\}(\Omega,\mathbb\{R\}^\{N\times n\})$ and the space of bounded mean oscillation $ \{\rm BMO\} \Omega,\mathbb\{R\}^\{N\times n\})$. The admissible maps $u\colon \Omega \to \mathbb\{R\}^N$ are of Sobolev class W1,p, satisfying a Dirichlet boundary condition, and to help clarify the significance of the above result the sufficiency condition for W1BMO local minimisers is extended from Lipschitz maps to this admissible class. },
author = {Dodd, Thomas J.},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Calculus of variations; local minimiser; partial regularity; strong quasiconvexity; Campanato space; Morrey space; Morrey-Campanato space; space of bounded mean oscillation; extremals; positive second variation; calculus of variations},
language = {eng},
month = {1},
number = {1},
pages = {111-131},
publisher = {EDP Sciences},
title = {An a priori Campanato type regularity condition for local minimisers in the calculus of variations},
url = {http://eudml.org/doc/250743},
volume = {16},
year = {2010},
}

TY - JOUR
AU - Dodd, Thomas J.
TI - An a priori Campanato type regularity condition for local minimisers in the calculus of variations
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2010/1//
PB - EDP Sciences
VL - 16
IS - 1
SP - 111
EP - 131
AB - An a priori Campanato type regularity condition is established for a class of W1X local minimisers $\overline{u}$ of the general variational integral $ \int_{\Omega} F(\nabla u(x))\,{\rm d}x$ where $\Omega \subset \mathbb{R}^n$ is an open bounded domain, F is of class C2, F is strongly quasi-convex and satisfies the growth condition$ F(\xi)\leq c(1+|\xi|^p)$ for a p > 1 and where the corresponding Banach spaces X are the Morrey-Campanato space $\mathcal{L}^{p,\mu} (\Omega,\mathbb{R}^{N\times n})$, µ < n, Campanato space $\mathcal{L}^{p,n}(\Omega,\mathbb{R}^{N\times n})$ and the space of bounded mean oscillation $ {\rm BMO} \Omega,\mathbb{R}^{N\times n})$. The admissible maps $u\colon \Omega \to \mathbb{R}^N$ are of Sobolev class W1,p, satisfying a Dirichlet boundary condition, and to help clarify the significance of the above result the sufficiency condition for W1BMO local minimisers is extended from Lipschitz maps to this admissible class.
LA - eng
KW - Calculus of variations; local minimiser; partial regularity; strong quasiconvexity; Campanato space; Morrey space; Morrey-Campanato space; space of bounded mean oscillation; extremals; positive second variation; calculus of variations
UR - http://eudml.org/doc/250743
ER -

References

top
  1. E. Acerbi and N. Fusco, A regularity theorem for quasiconvex integrals. Arch. Ration. Mech. Anal.99 (1987) 261–281.  
  2. E. Acerbi and N. Fusco, Local regularity for minimizers of non convex integrals. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)16 (1989) 603–636.  
  3. E. Acerbi and N. Fusco, Regularity for minimizers of non-quadratic functionals: the case 1 < p < 2. J. Math. Anal. Appl.140 (1989) 115–135.  
  4. S. Campanato, Proprietà di hölderianità di alcune classi di funzioni. Ann. Scuola Norm. Sup. Pisa (3)17 (1963) 175–188.  
  5. M. Carozza and A. Passarelli di Napoli, Partial regularity of local minimisers of quasiconvex integrals with sub-quadratic growth. Proc. Roy. Soc. Edinburgh133 (2003) 1249–1262.  
  6. M. Carozza, N. Fusco and G. Mingione, Partial regularity of minimisers of quasiconvex integrals with subquadratic growth. Ann. Mat. Pura Appl.175 (1998) 141–164.  
  7. F. Duzaar, J.F. Grotowski and M. Kronz, Regularity of almost minimizers of quasi-convex variational integrals with subquadratic growth. Ann. Mat. Pura Appl.184 (2005) 421–448.  
  8. L.C. Evans, Quasiconvexity and partial regularity in the calculus of variations. Arch. Ration. Mech. Anal.95 (1986) 227–252.  
  9. C. Fefferman and E.M. Stein, Hp spaces of several variables. Acta Math.129 (1972) 137–193.  
  10. N.B. Firoozye, Positive second variation and local minimisers in BMO-Sobolev spaces. SFB 256: Preprint No. 252, University of Bonn, Germany (1992).  
  11. E. Giusti, Direct methods in the calculus of variations. World Scientific Publishing, Singapore (2003).  
  12. E. Giusti and M. Miranda, Sulla regolaritá delle soluzioni di una classe di sistemi ellittici quasi-lineari. Arch. Ration. Mech. Anal.31 (1968) 173–184.  
  13. Y. Grabovsky and T. Mengesha, Direct approach to the problem of strong local minima in calculus of variations. Calc. Var. Partial Differential Equations29 (2007) 59–83.  
  14. F. John and L. Nirenberg, On functions of bounded mean oscillation. Comm. Pure Appl. Math.14 (1961) 415–426.  
  15. J. Kristensen and A. Taheri, Partial regularity of strong local minimizers in the multi-dimensional calculus of variations. Arch. Ration. Mech. Anal.170 (2003) 63–89.  
  16. R. Moser, Vanishing mean oscillation and regularity in the calculus of variations. Preprint No. 96, MPI for Mathematics in the Sciences, Leipzig, Germany (2001).  
  17. S. Müller and V. Šverák, Convex integration for Lipschitz mappings and counterexamples to regularity. Ann. Math.157 (2003) 715–742.  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.