Local regularity for minimizers of non convex integrals

E. Acerbi; N. Fusco

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1989)

  • Volume: 16, Issue: 4, page 603-636
  • ISSN: 0391-173X

How to cite

top

Acerbi, E., and Fusco, N.. "Local regularity for minimizers of non convex integrals." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 16.4 (1989): 603-636. <http://eudml.org/doc/84064>.

@article{Acerbi1989,
author = {Acerbi, E., Fusco, N.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {minimizers; nonconvex integrals; functional; sequentially lower semicontinuous; existence; regularity; strictly quasiconvex functionals; nonlinear elasticity},
language = {eng},
number = {4},
pages = {603-636},
publisher = {Scuola normale superiore},
title = {Local regularity for minimizers of non convex integrals},
url = {http://eudml.org/doc/84064},
volume = {16},
year = {1989},
}

TY - JOUR
AU - Acerbi, E.
AU - Fusco, N.
TI - Local regularity for minimizers of non convex integrals
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1989
PB - Scuola normale superiore
VL - 16
IS - 4
SP - 603
EP - 636
LA - eng
KW - minimizers; nonconvex integrals; functional; sequentially lower semicontinuous; existence; regularity; strictly quasiconvex functionals; nonlinear elasticity
UR - http://eudml.org/doc/84064
ER -

References

top
  1. [1] E. Acerbi - N. Fusco, Semicontinuity problems in the calculus of variations. Arch. Rational Mech. Anal.86 (1984), 125-145. Zbl0565.49010MR751305
  2. [2] E. Acerbi - N. Fusco, A regularity theorem for minimizers of quasiconvex integrals. Arch. Rational Mech. Anal.99 (1987), 261-281. Zbl0627.49007MR888453
  3. [3] G. Anzellotti - M. Giaquinta, Convex functionals and partial regularity. Arch. Rational Mech. Anal.102 (1988), 243-272. Zbl0658.49005MR944548
  4. [4] I. Ekeland, Nonconvex minimization problems. Bull. Amer. Math. Soc.1 (1979), 443-474. Zbl0441.49011MR526967
  5. [5] L.C. Evans, Quasiconvexity and partial regularity in the calculus of variations. Arch. Rational Mech. Anal.95 (1986), 227-252. Zbl0627.49006MR853966
  6. [6] L.C. Evans - R.F. Gariepy, Blow-up, compactness and partial regularity in the calculus of variations. Indiana Univ. Math. J.36 (1987), 361-371. Zbl0626.49007MR891780
  7. [7] N. Fusco - J. Hutchinson, C1.α partial regularity of functions minimising quasiconvex integrals. Manuscripta Math.54 (1985), 121-143. Zbl0587.49005
  8. [8] M. Giaquinta, Multiple integrals in the calculus of variations and nonlinear elliptic systems. Ann. of Math. Studies105, Princeton University Press, Princeton, 1983. Zbl0516.49003MR717034
  9. [9] M. Giaquinta, Quasiconvexity, growth conditions, and partial regularity. Partial differential equations and calculus of variations, 211-237, Lecture Notes in Math., 1357, Springer, Berlin-New York, 1988. Zbl0658.49006MR976237
  10. [10] M. Giaquinta - E. Giusti, On the regularity of minima of variational integrals. Acta Math.148 (1982), 31-46. Zbl0494.49031MR666107
  11. [11] M. Giaquinta - G. Modica, Partial regularity of minimizers of quasiconvex integrals. Ann. Inst. H. Poincaré, Analyse non linéaire3 (1986), 185-208. Zbl0594.49004MR847306
  12. [12] M.C. Hong, Existence and partial regularity in the calculus of variations. Ann. Mat. Pura Appl.149 (1987), 311-328. Zbl0648.49008MR932791
  13. [13] P. Marcellini - C. Sbordone, On the existence of minima of multiple integrals in the calculus of variations. J. Math. Pures Appl. 62 (1983), 1-9. Zbl0516.49011MR700045
  14. [14] N.G. Meyers, Quasi-convexity and lower semicontinuity of multiple variational integrals of any order. Trans. Amer. Math. Soc.119 (1965), 1-28. Zbl0166.38501MR188838
  15. [15] C.B. MorreyJr., Quasi-convexity and the semicontinuity of multiple integrals. Pacific J. Math.2 (1952), 25-53. Zbl0046.10803MR54865
  16. [16] K. Uhlenbeck, Regularity for a class of nonlinear elliptic systems. Acta Math.138 (1977), 219-240. Zbl0372.35030MR474389

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.