A well-conditioned integral equation for iterative solution of scattering problems with a variable Leontovitch boundary condition

Sébastien Pernet

ESAIM: Mathematical Modelling and Numerical Analysis (2010)

  • Volume: 44, Issue: 4, page 781-801
  • ISSN: 0764-583X

Abstract

top
The construction of a well-conditioned integral equation for iterative solution of scattering problems with a variable Leontovitch boundary condition is proposed. A suitable parametrix is obtained by using a new unknown and an approximation of the transparency condition. We prove the well-posedness of the equation for any wavenumber. Finally, some numerical comparisons with well-tried method prove the efficiency of the new formulation.

How to cite

top

Pernet, Sébastien. "A well-conditioned integral equation for iterative solution of scattering problems with a variable Leontovitch boundary condition." ESAIM: Mathematical Modelling and Numerical Analysis 44.4 (2010): 781-801. <http://eudml.org/doc/250767>.

@article{Pernet2010,
abstract = { The construction of a well-conditioned integral equation for iterative solution of scattering problems with a variable Leontovitch boundary condition is proposed. A suitable parametrix is obtained by using a new unknown and an approximation of the transparency condition. We prove the well-posedness of the equation for any wavenumber. Finally, some numerical comparisons with well-tried method prove the efficiency of the new formulation. },
author = {Pernet, Sébastien},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Electromagnetic scattering; boundary integral equations; impedance boundary condition; preconditioner; electromagnetic scattering; integral equation; Leontovitch boundary condition},
language = {eng},
month = {6},
number = {4},
pages = {781-801},
publisher = {EDP Sciences},
title = {A well-conditioned integral equation for iterative solution of scattering problems with a variable Leontovitch boundary condition},
url = {http://eudml.org/doc/250767},
volume = {44},
year = {2010},
}

TY - JOUR
AU - Pernet, Sébastien
TI - A well-conditioned integral equation for iterative solution of scattering problems with a variable Leontovitch boundary condition
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2010/6//
PB - EDP Sciences
VL - 44
IS - 4
SP - 781
EP - 801
AB - The construction of a well-conditioned integral equation for iterative solution of scattering problems with a variable Leontovitch boundary condition is proposed. A suitable parametrix is obtained by using a new unknown and an approximation of the transparency condition. We prove the well-posedness of the equation for any wavenumber. Finally, some numerical comparisons with well-tried method prove the efficiency of the new formulation.
LA - eng
KW - Electromagnetic scattering; boundary integral equations; impedance boundary condition; preconditioner; electromagnetic scattering; integral equation; Leontovitch boundary condition
UR - http://eudml.org/doc/250767
ER -

References

top
  1. F. Alouges, S. Borel and D. Levadoux, A stable well conditioned integral equation for electromagnetism scattering. J. Comput. Appl. Math.204 (2007) 440–451.  Zbl1127.78005
  2. X. Antoine and H. Barucq, Microlocal diagonalization of strictly hyperbolic pseudodifferential systems and application to the design of radiation conditions in electromagnetism. SIAM J. Appl. Math.61 (2001) 1877–1905.  Zbl0983.35138
  3. X. Antoine and M. Darbas, Generalized combined field integral equations for the iterative solution of the three-dimensional Helmholtz equation. ESAIM: M2AN41 (2007) 147–167.  Zbl1123.65117
  4. A. Bendali, M'B Fares and J. Gay, A boundary-element solution of the Leontovitch problem. IEEE Trans. Antennas Propagat.47 (1999) 1597–1605.  Zbl0949.78017
  5. Y. Boubendir, Techniques de décomposition de domaine et méthode d'équations intégrales. Ph.D. Thesis, INSA, France (2002).  
  6. A. Buffa, Hodge decomposition on the boundary of a polyhedron: the multi-connected case. Math. Mod. Meth. Appl. Sci.11 (2001) 1491–1504.  Zbl1014.58002
  7. A. Buffa and R. Hiptmair, Galerkin Boundary Element Methods for Electromagnetic Scattering, in Computational Methods in Wave Propagation, M. Ainsworth, P. Davies, D.B. Duncan, P.A. Martin and B. Rynne Eds., Lecture Notes in Computational Science and Engineering31, Springer-Verlag (2003) 83–124.  Zbl1055.78013
  8. F. Cakoni, D. Colton and P. Monk, The electromagnetic inverse scattering problem for partially coated Lipschitz domains. Proc. Royal. Soc. Edinburgh134A (2004) 661–682.  Zbl1071.78021
  9. S.L. Campbell, I.C.F. Ipsen, C.T. Kelley, C.D. Meyer and Z.Q. Xue, Convergence estimates for solution of integral equations with GMRES. Tech. Report CRSC-TR95-13, North Carolina State University, Center for Research in Scientific Computation, USA (1995).  Zbl0859.65137
  10. S.L. Campbell, I.C.F. Ipsen, C.T. Kelley and C.D. Meyer, GMRES and the Minimal Polynomial. BIT Numerical Mathematics36 (1996) 664–675.  Zbl0865.65017
  11. H.S. Christiansen, Résolution des équations intégrales pour la diffraction d'ondes acoustiques et électromagnétiques – Stabilisation d'algorithmes itératifs et aspects de l'analyse numérique. Ph.D. Thesis, Centre de Mathématiques Appliquées, UMR 7641, CNRS/École polytechnique, France (2002).  
  12. S. Christiansen and J.C. Nédélec, A preconditioner for the electric field integral equation based on Calderon formulas. SIAM J. Numer. Anal.40 (2002) 1100–1135.  Zbl1021.78010
  13. F. Collino, S. Ghanemi and P. Joly, Domain decomposition method for the Helmholtz equation: a general presentation. Comput. Methods Appl. Mech. Eng.184 (2000) 171–211.  Zbl0965.65134
  14. F. Collino, F. Millot and S. Pernet, Boundary-integral methods for iterative solution of scattering problems with variable impedance surface condition. PIER80 (2008) 1–28.  
  15. D. Colton and R. Kress, Inverse acoustic and electromagnetic scattering theory, Applied Mathematical Sciences93. Springer, Berlin, Germany (1992).  Zbl0760.35053
  16. M. Darbas, Préconditionneurs analytiques de type Calderon pour les formulations intégrales des problèmes de direction d'ondes. Ph.D. Thesis, INSA Toulouse, France (2004).  
  17. M. Darbas, Generalized CFIE for the Iterative Solution of 3-D Maxwell Equations. Appl. Math. Lett.19 (2006) 834–839.  Zbl1135.78012
  18. M. Darbas, Some second-kind integral equations in electromagnetism. Preprint, Cahiers du Ceremade 2006-15 (2006) .  URIhttp://www.ceremade.dauphine.fr/preprints/CMD/2006-15.pdf
  19. V. Frayssé, L. Giraud, S. Gratton and J. Langou, A Set of GMRES Routines for Real and Complex Arithmetics on High Performance Computers. CERFACS Technical Report, TR/PA/03/3 (2003) .  Zbl1070.65527URIhttp://www.cerfacs.fr/algor/Softs/GMRES/index.html
  20. J.-F. Lee, R. Lee and R.J. Burkholder, Loop star basis functions and a robust preconditioner for EFIE scattering problems. IEEE Trans. Antennas Propagat.51 (2003) 1855–1863.  
  21. M.A. Leontovitch, Approximate boundary conditions for the electromagnetic field on the surface of a good conductor, Investigations Radiowave Propagation part II. Academy of Sciences, Moscow, Russia (1978).  
  22. J.R. Mautz and R.F. Harrington, A combined-source solution for radiation and scattering from a perfectly conducting body. IEEE Trans. Antennas Propag.AP-27 (1979) 445–454.  
  23. F.A. Milinazzo, C.A. Zala, G.H. Brooke, Rational square-root approximations for parabolic equation algorithms. J. Acoust. Soc. Am.101 (1997) 760–766.  
  24. K.M. Mitzner, Numerical solution of the exterior scattering problem at eigenfrequencies of the interior problem. Int. Scientific Radio Union Meeting, Boston, USA (1968).  
  25. P. Monk, Finite Element Methods for Maxwell's Equations, Numerical Mathematics and Scientific Computation. Oxford Science Publication, UK (2003).  
  26. Multifrontal Massively Parallel Solver, www.enseeiht.fr/lima/apo/MUMPS.  
  27. J.C. Nédélec, Acoustic and Electromagnic Equations Integral Representation for Harmonic Problems. Springer, New York, USA (2001).  
  28. S.M. Rao, D.R. Wilton and A.W. Glisson, Electromagnetic scattering by surfaces of arbitrary shape. IEEE Trans. Antennas Propagat.AP-30 (1982) 409–418.  
  29. V. Rokhlin, Diagonal form of translation operators for the Helmholtz equation in three dimensions. Appl. Comput. Harmon. Anal.1 (1993) 82–93.  Zbl0795.35021
  30. O. Steinbach and W.L. Wendland, The construction of some efficient preconditioners in the boundary element method. Adv. Comput. Math.9 (1998) 191–216.  Zbl0922.65076
  31. B. Stupfel, A hybrid finite element and integral equation domain decomposition method for the solution of the 3-D scattering problem. J. Comput. Phys.172 (2001) 451–471.  Zbl0992.78014

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.