Balances and Abelian Complexity of a Certain Class of Infinite Ternary Words
RAIRO - Theoretical Informatics and Applications (2010)
- Volume: 44, Issue: 3, page 313-337
- ISSN: 0988-3754
Access Full Article
topAbstract
topHow to cite
topReferences
top- B. Adamczewski, Codages de rotations et phénomènes d'autosimilarité. J. Théor. Nombres Bordeaux14 (2002) 351–386.
- B. Adamczewski, Balances for fixed points of primitive substitutions. Theoret. Comput. Sci.307 (2003) 47–75.
- Ľ. Balková, E. Pelantová and Š. Starosta, Sturmian Jungle (or Garden?) on Multiliteral Alphabets. RAIRO: Theoret. Informatics Appl (to appear).
- Ľ. Balková, E. Pelantová and O. Turek, Combinatorial and Arithmetical Properties of Infinite Words Associated with Quadratic Non-simple Parry Numbers. RAIRO: Theoret. Informatics Appl.413 (2007) 307–328.
- V. Berthé and R. Tijdeman, Balance properties of multi-dimensional words. Theoret. Comput. Sci.273 (2002) 197–224.
- J. Cassaigne, Recurrence in infinite words, in Proc. STACS, LNCS Dresden (Allemagne) 2010, Springer (2001) 1–11.
- J. Cassaigne, S. Ferenczi and L.Q. Zamboni, Imbalances in Arnoux-Rauzy sequences. Ann. Inst. Fourier50 (2000) 1265–1276.
- E.M. Coven and G.A. Hedlund, Sequences with minimal block growth. Math. Syst. Th.7 (1973) 138–153.
- J. Currie and N. Rampersad, Recurrent words with constant Abelian complexity. Adv. Appl. Math. doi: (2010). DOI10.1016/j.aam.2010.05.001
- S. Fabre, Substitutions et β-systèmes de numération. Theoret. Comput. Sci.137 (1995) 219–236.
- C. Frougny, J.P. Gazeau and J. Krejcar, Additive and multiplicative properties of point-sets based on beta-integers. Theor. Comp. Sci.303 (2003) 491–516.
- K. Klouda and E. Pelantová, Factor complexity of infinite words associated with non-simple Parry numbers. Integers – Electronic Journal of Combinatorial Number Theory (2009) 281–310.
- M. Lothaire, Algebraic combinatorics on words. Cambridge University Press (2002).
- M. Morse and G.A. Hedlund, Symbolic dynamics. Am. J. Math.60 (1938) 815–866.
- M. Morse and G.A. Hedlund, Symbolic dynamics II. Sturmian Trajectories. Am. J. Math.62 (1940) 1–42.
- G. Richomme, K. Saari, L. Q. Zamboni, Balance and Abelian Complexity of the Tribonacci word. Adv. Appl. Math.45 (2010) 212–231.
- G. Richomme, K. Saari, L. Q. Zamboni, Abelian Complexity in Minimal Subshifts. J. London Math. Soc. (to appear).
- W. Thurston, Groups, tilings and finite state automata. AMS Colloquium Lecture Notes (1989).
- O. Turek, Balance properties of the fixed point of the substitution associated to quadratic simple Pisot numbers. RAIRO: Theoret. Informatics Appl.41 2 (2007) 123–135.
- L. Vuillon, Balanced words. Bull. Belg. Math. Soc. Simon Stevin10 (2003) 787–805.