Variational particle schemes for the porous medium equation and for the system of isentropic Euler equations
Michael Westdickenberg; Jon Wilkening
ESAIM: Mathematical Modelling and Numerical Analysis (2010)
- Volume: 44, Issue: 1, page 133-166
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topReferences
top- L. Ambrosio, N. Gigli and G. Savaré, Gradient flows in metric spaces and in the space of probability measures, Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, Switzerland (2005).
- V.I. Arnold and B.A. Khesin,Topological methods in hydrodynamics, Applied Mathematical Sciences125. Springer-Verlag, New York, USA (1998).
- L.A. Caffarelli, Allocation maps with general cost functions, in Partial differential equations and applications, P. Marcellini, G.G. Talenti and E. Vesintini Eds., Lecture Notes in Pure and Applied Mathematics177, Marcel Dekker, Inc., New York, USA (1996) 29–35.
- G.-Q. Chen and D. Wang, The Cauchy problem for the Euler equations for compressible fluids, Handbook of mathematical fluid dynamicsI. Elsevier, Amsterdam, North-Holland (2002) 421–543.
- C.M. Dafermos, The entropy rate admissibility criterion for solutions of hyperbolic conservation laws. J. Differential Equations14 (1973) 202–212.
- W. Gangbo and R.J. McCann, The geometry of optimal transportation. Acta Math.177 (1996) 113–161.
- W. Gangbo and M. Westdickenberg, Optimal transport for the system of isentropic Euler equations. Comm. Partial Diff. Eq.34 (2009) 1041–1073.
- E. Hairer, S.P. Norsett and G. Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems. 2nd edition, Springer, Berlin, Germany (2000).
- D.D. Holm, J.E. Marsden and T.S. Ratiu, The Euler-Poincaré equations and semidirect products with applications to continuum theories. Adv. Math.137 (1998) 1–81.
- . URIhttp://abel.ee.ucla.edu/cvxopt
- . URIhttp://www.ziena.com/knitro.htm
- D. Kinderlehrer and N.J. Walkington, Approximation of parabolic equations using the Wasserstein metric. ESAIM: M2AN33 (1999) 837–852.
- J.E. Marsden and M. West, Discrete mechanics and variational integrators. Acta Numer.10 (2001) 357–514.
- J. Nocedal and S.J. Wright, Numerical Optimization. Springer, New York, USA (1999).
- F. Otto, The geometry of dissipative evolution equations: the porous medium equation. Comm. Partial Diff. Eq.26 (2001) 101–174.
- J.L. Vázquez, Perspectives in nonlinear diffusion: between analysis, physics and geometry, in International Congress of MathematiciansI (2007) 609–634.
- C. Villani, Topics in optimal transportation, Graduate Studies in Mathematics58. American Mathematical Society, Providence, USA (2003).