Convergence of a variational lagrangian scheme for a nonlinear drift diffusion equation

Daniel Matthes; Horst Osberger

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2014)

  • Volume: 48, Issue: 3, page 697-726
  • ISSN: 0764-583X

Abstract

top
We study a Lagrangian numerical scheme for solution of a nonlinear drift diffusion equation on an interval. The discretization is based on the equation’s gradient flow structure with respect to the Wasserstein distance. The scheme inherits various properties from the continuous flow, like entropy monotonicity, mass preservation, metric contraction and minimum/ maximum principles. As the main result, we give a proof of convergence in the limit of vanishing mesh size under a CFL-type condition. We also present results from numerical experiments.

How to cite

top

Matthes, Daniel, and Osberger, Horst. "Convergence of a variational lagrangian scheme for a nonlinear drift diffusion equation." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 48.3 (2014): 697-726. <http://eudml.org/doc/273272>.

@article{Matthes2014,
abstract = {We study a Lagrangian numerical scheme for solution of a nonlinear drift diffusion equation on an interval. The discretization is based on the equation’s gradient flow structure with respect to the Wasserstein distance. The scheme inherits various properties from the continuous flow, like entropy monotonicity, mass preservation, metric contraction and minimum/ maximum principles. As the main result, we give a proof of convergence in the limit of vanishing mesh size under a CFL-type condition. We also present results from numerical experiments.},
author = {Matthes, Daniel, Osberger, Horst},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {lagrangian discretization; nonlinear Fokker-Planck equation; gradient flow; Wasserstein metric; Lagrangian discretization; nonlinear drift diffusion equation; entropy monotonicity; mass preservation; metric contraction; minimum/maximum principles; convergence; Courant-Friedrichs-Lewy condition; numerical results},
language = {eng},
number = {3},
pages = {697-726},
publisher = {EDP-Sciences},
title = {Convergence of a variational lagrangian scheme for a nonlinear drift diffusion equation},
url = {http://eudml.org/doc/273272},
volume = {48},
year = {2014},
}

TY - JOUR
AU - Matthes, Daniel
AU - Osberger, Horst
TI - Convergence of a variational lagrangian scheme for a nonlinear drift diffusion equation
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2014
PB - EDP-Sciences
VL - 48
IS - 3
SP - 697
EP - 726
AB - We study a Lagrangian numerical scheme for solution of a nonlinear drift diffusion equation on an interval. The discretization is based on the equation’s gradient flow structure with respect to the Wasserstein distance. The scheme inherits various properties from the continuous flow, like entropy monotonicity, mass preservation, metric contraction and minimum/ maximum principles. As the main result, we give a proof of convergence in the limit of vanishing mesh size under a CFL-type condition. We also present results from numerical experiments.
LA - eng
KW - lagrangian discretization; nonlinear Fokker-Planck equation; gradient flow; Wasserstein metric; Lagrangian discretization; nonlinear drift diffusion equation; entropy monotonicity; mass preservation; metric contraction; minimum/maximum principles; convergence; Courant-Friedrichs-Lewy condition; numerical results
UR - http://eudml.org/doc/273272
ER -

References

top
  1. [1] L. Ambrosio, N. Gigli and G. Savaré, Gradient flows in metric spaces and in the space of probability measures. Lectures in Mathematics. ETH Zürich, Birkhäuser Verlag, Basel (2005). Zbl1145.35001MR2129498
  2. [2] L. Ambrosio, S. Lisini and G. Savaré, Stability of flows associated to gradient vector fields and convergence of iterated transport maps. Manuscripta Math.121 (2006) 1–50. Zbl1099.49027MR2258529
  3. [3] J.-D. Benamou and Y. Brenier, A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer. Math.84 (2000) 375–393. Zbl0968.76069MR1738163
  4. [4] A. Blanchet, V. Calvez and J.A. Carrillo, Convergence of the mass-transport steepest descent scheme for the subcritical Patlak-Keller-Segel model. SIAM J. Numer. Anal.46 (2008) 691–721. Zbl1205.65332MR2383208
  5. [5] C.J. Budd, G.J. Collins, W.Z. Huang and R.D. Russell, Self-similar numerical solutions of the porous-medium equation using moving mesh methods. R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci.357 (1999) 1047–1077. Zbl0931.76079MR1694702
  6. [6] M. Burger, J.A. Carrillo and M.-T. Wolfram, A mixed finite element method for nonlinear diffusion equations. Kinet. Relat. Models3 (2010) 59–83. Zbl1194.35026MR2580954
  7. [7] J.A. Carrillo and J.S. Moll, Numerical simulation of diffusive and aggregation phenomena in nonlinear continuity equations by evolving diffeomorphisms. SIAM J. Sci. Comput. 31 (2009/2010) 4305–4329. Zbl1205.65265MR2566595
  8. [8] F. Cavalli and G. Naldi, A Wasserstein approach to the numerical solution of the one-dimensional Cahn-Hilliard equation. Kinet. Relat. Models3 (2010) 123–142. Zbl1191.80042MR2580956
  9. [9] B. Düring, D. Matthes and J.P. Milišić, A gradient flow scheme for nonlinear fourth order equations. Discrete Contin. Dyn. Syst. Ser. B14 (2010) 935–959. Zbl1206.65221MR2670179
  10. [10] L.C. Evans, O. Savin and W. Gangbo, Diffeomorphisms and nonlinear heat flows. SIAM J. Math. Anal.37 (2005) 737–751. Zbl1096.35061MR2191774
  11. [11] E. Giusti, Minimal surfaces and functions of bounded variation, vol. 80, Monographs in Mathematics. Birkhäuser Verlag, Basel (1984). Zbl0545.49018MR775682
  12. [12] L. Gosse and G. Toscani, Identification of asymptotic decay to self-similarity for one-dimensional filtration equations. SIAM J. Numer. Anal. 43 (2006) 2590–2606 (electronic). Zbl1145.76048MR2206449
  13. [13] R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal.29 (1998) 1–17. Zbl0915.35120
  14. [14] D. Kinderlehrer and N.J. Walkington, Approximation of parabolic equations using the Wasserstein metric. ESAIM: M2AN 33 (1999) 837–852. Zbl0936.65121
  15. [15] M. Leven, Gradientenfluß-basierte diskretisierung parabolischer gleichungen, diplomarbeit, Universität Bonn (2002). 
  16. [16] R.C. MacCamy and E. Socolovsky, A numerical procedure for the porous media equation. Hyperbolic partial differential equations, II. Comput. Math. Appl. 11 (1985) 315–319. Zbl0608.76083
  17. [17] R.J. McCann, A convexity principle for interacting gases. Adv. Math.128 (1997) 153–179. Zbl0901.49012
  18. [18] F. Otto, The geometry of dissipative evolution equations: the porous medium equation. Comm. Partial Differential Equations26 (2001) 101–174. Zbl0984.35089
  19. [19] T. Roessler, Discretizing the porous medium equation based on its gradient flow structure – a consistency paradox, Technical report 150, Sonderforschungsbereich 611, May 2004.Available online at http://sfb611.iam.uni-bonn.de/uploads/150-komplett.pdf. 
  20. [20] R. Rossi and G. Savaré, Tightness, integral equicontinuity and compactness for evolution problems in Banach spaces. Ann. Sc. Norm. Super. Pisa Cl. Sci.2 (2003) 395–431. Zbl1150.46014MR2005609
  21. [21] G. Russo, Deterministic diffusion of particles. Commun. Pure Appl. Math.43 (1990) 697–733. Zbl0713.65089MR1059326
  22. [22] S. Serfaty, Gamma-convergence of gradient flows on Hilbert and metric spaces and applications, Discrete Contin. Dyn. Syst.31 (2011) 1427-1451. Zbl1239.35015MR2836361
  23. [23] C. Villani, Topics in optimal transportation, in vol. 58 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2003). Zbl1106.90001MR1964483
  24. [24] M. Westdickenberg and J. Wilkening, Variational particle schemes for the porous medium equation and for the system of isentropic Euler equations. ESAIM: M2AN 44 (2010) 133–166. Zbl05693768MR2647756

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.