# Convergence of a variational lagrangian scheme for a nonlinear drift diffusion equation

Daniel Matthes; Horst Osberger

- Volume: 48, Issue: 3, page 697-726
- ISSN: 0764-583X

## Access Full Article

top## Abstract

top## How to cite

topMatthes, Daniel, and Osberger, Horst. "Convergence of a variational lagrangian scheme for a nonlinear drift diffusion equation." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 48.3 (2014): 697-726. <http://eudml.org/doc/273272>.

@article{Matthes2014,

abstract = {We study a Lagrangian numerical scheme for solution of a nonlinear drift diffusion equation on an interval. The discretization is based on the equation’s gradient flow structure with respect to the Wasserstein distance. The scheme inherits various properties from the continuous flow, like entropy monotonicity, mass preservation, metric contraction and minimum/ maximum principles. As the main result, we give a proof of convergence in the limit of vanishing mesh size under a CFL-type condition. We also present results from numerical experiments.},

author = {Matthes, Daniel, Osberger, Horst},

journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},

keywords = {lagrangian discretization; nonlinear Fokker-Planck equation; gradient flow; Wasserstein metric; Lagrangian discretization; nonlinear drift diffusion equation; entropy monotonicity; mass preservation; metric contraction; minimum/maximum principles; convergence; Courant-Friedrichs-Lewy condition; numerical results},

language = {eng},

number = {3},

pages = {697-726},

publisher = {EDP-Sciences},

title = {Convergence of a variational lagrangian scheme for a nonlinear drift diffusion equation},

url = {http://eudml.org/doc/273272},

volume = {48},

year = {2014},

}

TY - JOUR

AU - Matthes, Daniel

AU - Osberger, Horst

TI - Convergence of a variational lagrangian scheme for a nonlinear drift diffusion equation

JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

PY - 2014

PB - EDP-Sciences

VL - 48

IS - 3

SP - 697

EP - 726

AB - We study a Lagrangian numerical scheme for solution of a nonlinear drift diffusion equation on an interval. The discretization is based on the equation’s gradient flow structure with respect to the Wasserstein distance. The scheme inherits various properties from the continuous flow, like entropy monotonicity, mass preservation, metric contraction and minimum/ maximum principles. As the main result, we give a proof of convergence in the limit of vanishing mesh size under a CFL-type condition. We also present results from numerical experiments.

LA - eng

KW - lagrangian discretization; nonlinear Fokker-Planck equation; gradient flow; Wasserstein metric; Lagrangian discretization; nonlinear drift diffusion equation; entropy monotonicity; mass preservation; metric contraction; minimum/maximum principles; convergence; Courant-Friedrichs-Lewy condition; numerical results

UR - http://eudml.org/doc/273272

ER -

## References

top- [1] L. Ambrosio, N. Gigli and G. Savaré, Gradient flows in metric spaces and in the space of probability measures. Lectures in Mathematics. ETH Zürich, Birkhäuser Verlag, Basel (2005). Zbl1145.35001MR2129498
- [2] L. Ambrosio, S. Lisini and G. Savaré, Stability of flows associated to gradient vector fields and convergence of iterated transport maps. Manuscripta Math.121 (2006) 1–50. Zbl1099.49027MR2258529
- [3] J.-D. Benamou and Y. Brenier, A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer. Math.84 (2000) 375–393. Zbl0968.76069MR1738163
- [4] A. Blanchet, V. Calvez and J.A. Carrillo, Convergence of the mass-transport steepest descent scheme for the subcritical Patlak-Keller-Segel model. SIAM J. Numer. Anal.46 (2008) 691–721. Zbl1205.65332MR2383208
- [5] C.J. Budd, G.J. Collins, W.Z. Huang and R.D. Russell, Self-similar numerical solutions of the porous-medium equation using moving mesh methods. R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci.357 (1999) 1047–1077. Zbl0931.76079MR1694702
- [6] M. Burger, J.A. Carrillo and M.-T. Wolfram, A mixed finite element method for nonlinear diffusion equations. Kinet. Relat. Models3 (2010) 59–83. Zbl1194.35026MR2580954
- [7] J.A. Carrillo and J.S. Moll, Numerical simulation of diffusive and aggregation phenomena in nonlinear continuity equations by evolving diffeomorphisms. SIAM J. Sci. Comput. 31 (2009/2010) 4305–4329. Zbl1205.65265MR2566595
- [8] F. Cavalli and G. Naldi, A Wasserstein approach to the numerical solution of the one-dimensional Cahn-Hilliard equation. Kinet. Relat. Models3 (2010) 123–142. Zbl1191.80042MR2580956
- [9] B. Düring, D. Matthes and J.P. Milišić, A gradient flow scheme for nonlinear fourth order equations. Discrete Contin. Dyn. Syst. Ser. B14 (2010) 935–959. Zbl1206.65221MR2670179
- [10] L.C. Evans, O. Savin and W. Gangbo, Diffeomorphisms and nonlinear heat flows. SIAM J. Math. Anal.37 (2005) 737–751. Zbl1096.35061MR2191774
- [11] E. Giusti, Minimal surfaces and functions of bounded variation, vol. 80, Monographs in Mathematics. Birkhäuser Verlag, Basel (1984). Zbl0545.49018MR775682
- [12] L. Gosse and G. Toscani, Identification of asymptotic decay to self-similarity for one-dimensional filtration equations. SIAM J. Numer. Anal. 43 (2006) 2590–2606 (electronic). Zbl1145.76048MR2206449
- [13] R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal.29 (1998) 1–17. Zbl0915.35120
- [14] D. Kinderlehrer and N.J. Walkington, Approximation of parabolic equations using the Wasserstein metric. ESAIM: M2AN 33 (1999) 837–852. Zbl0936.65121
- [15] M. Leven, Gradientenfluß-basierte diskretisierung parabolischer gleichungen, diplomarbeit, Universität Bonn (2002).
- [16] R.C. MacCamy and E. Socolovsky, A numerical procedure for the porous media equation. Hyperbolic partial differential equations, II. Comput. Math. Appl. 11 (1985) 315–319. Zbl0608.76083
- [17] R.J. McCann, A convexity principle for interacting gases. Adv. Math.128 (1997) 153–179. Zbl0901.49012
- [18] F. Otto, The geometry of dissipative evolution equations: the porous medium equation. Comm. Partial Differential Equations26 (2001) 101–174. Zbl0984.35089
- [19] T. Roessler, Discretizing the porous medium equation based on its gradient flow structure – a consistency paradox, Technical report 150, Sonderforschungsbereich 611, May 2004.Available online at http://sfb611.iam.uni-bonn.de/uploads/150-komplett.pdf.
- [20] R. Rossi and G. Savaré, Tightness, integral equicontinuity and compactness for evolution problems in Banach spaces. Ann. Sc. Norm. Super. Pisa Cl. Sci.2 (2003) 395–431. Zbl1150.46014MR2005609
- [21] G. Russo, Deterministic diffusion of particles. Commun. Pure Appl. Math.43 (1990) 697–733. Zbl0713.65089MR1059326
- [22] S. Serfaty, Gamma-convergence of gradient flows on Hilbert and metric spaces and applications, Discrete Contin. Dyn. Syst.31 (2011) 1427-1451. Zbl1239.35015MR2836361
- [23] C. Villani, Topics in optimal transportation, in vol. 58 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2003). Zbl1106.90001MR1964483
- [24] M. Westdickenberg and J. Wilkening, Variational particle schemes for the porous medium equation and for the system of isentropic Euler equations. ESAIM: M2AN 44 (2010) 133–166. Zbl05693768MR2647756

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.