A finite element scheme for the evolution of orientational order in fluid membranes

Sören Bartels; Georg Dolzmann; Ricardo H. Nochetto

ESAIM: Mathematical Modelling and Numerical Analysis (2010)

  • Volume: 44, Issue: 1, page 1-31
  • ISSN: 0764-583X

Abstract

top
We investigate the evolution of an almost flat membrane driven by competition of the homogeneous, Frank, and bending energies as well as the coupling of the local order of the constituent molecules of the membrane to its curvature. We propose an alternative to the model in [J.B. Fournier and P. Galatoa, J. Phys. II7 (1997) 1509–1520; N. Uchida, Phys. Rev. E66 (2002) 040902] which replaces a Ginzburg-Landau penalization for the length of the order parameter by a rigid constraint. We introduce a fully discrete scheme, consisting of piecewise linear finite elements, show that it is unconditionally stable for a large range of the elastic moduli in the model, and prove its convergence (up to subsequences) thereby proving the existence of a weak solution to the continuous model. Numerical simulations are included that examine typical model situations, confirm our theory, and explore numerical predictions beyond that theory.

How to cite

top

Bartels, Sören, Dolzmann, Georg, and Nochetto, Ricardo H.. "A finite element scheme for the evolution of orientational order in fluid membranes." ESAIM: Mathematical Modelling and Numerical Analysis 44.1 (2010): 1-31. <http://eudml.org/doc/250813>.

@article{Bartels2010,
abstract = { We investigate the evolution of an almost flat membrane driven by competition of the homogeneous, Frank, and bending energies as well as the coupling of the local order of the constituent molecules of the membrane to its curvature. We propose an alternative to the model in [J.B. Fournier and P. Galatoa, J. Phys. II7 (1997) 1509–1520; N. Uchida, Phys. Rev. E66 (2002) 040902] which replaces a Ginzburg-Landau penalization for the length of the order parameter by a rigid constraint. We introduce a fully discrete scheme, consisting of piecewise linear finite elements, show that it is unconditionally stable for a large range of the elastic moduli in the model, and prove its convergence (up to subsequences) thereby proving the existence of a weak solution to the continuous model. Numerical simulations are included that examine typical model situations, confirm our theory, and explore numerical predictions beyond that theory. },
author = {Bartels, Sören, Dolzmann, Georg, Nochetto, Ricardo H.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Biomembrane; orientational order; curvature; biomembrane},
language = {eng},
month = {3},
number = {1},
pages = {1-31},
publisher = {EDP Sciences},
title = {A finite element scheme for the evolution of orientational order in fluid membranes},
url = {http://eudml.org/doc/250813},
volume = {44},
year = {2010},
}

TY - JOUR
AU - Bartels, Sören
AU - Dolzmann, Georg
AU - Nochetto, Ricardo H.
TI - A finite element scheme for the evolution of orientational order in fluid membranes
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2010/3//
PB - EDP Sciences
VL - 44
IS - 1
SP - 1
EP - 31
AB - We investigate the evolution of an almost flat membrane driven by competition of the homogeneous, Frank, and bending energies as well as the coupling of the local order of the constituent molecules of the membrane to its curvature. We propose an alternative to the model in [J.B. Fournier and P. Galatoa, J. Phys. II7 (1997) 1509–1520; N. Uchida, Phys. Rev. E66 (2002) 040902] which replaces a Ginzburg-Landau penalization for the length of the order parameter by a rigid constraint. We introduce a fully discrete scheme, consisting of piecewise linear finite elements, show that it is unconditionally stable for a large range of the elastic moduli in the model, and prove its convergence (up to subsequences) thereby proving the existence of a weak solution to the continuous model. Numerical simulations are included that examine typical model situations, confirm our theory, and explore numerical predictions beyond that theory.
LA - eng
KW - Biomembrane; orientational order; curvature; biomembrane
UR - http://eudml.org/doc/250813
ER -

References

top
  1. F. Alouges, A new algorithm for computing liquid crystal stable configurations: the harmonic mapping case. SIAM J. Numer. Anal.34 (1997) 1708–1726.  Zbl0886.35010
  2. F. Alouges, A new finite element scheme for Landau-Lifchitz equations. Discrete Contin. Dyn. Syst. Ser. S1 (2008) 187–196.  Zbl1152.35304
  3. J.W. Barrett, S. Bartels, X. Feng and A. Prohl, A convergent and constraint-preserving finite element method for the p -harmonic flow into spheres. SIAM J. Numer. Anal.45 (2007) 905–927.  Zbl1155.35055
  4. J.W. Barrett, H. Garcke and R. Nürnberg, On the parametric finite element approximation of evolving hypersurfaces in 3 . J. Comput. Phys.227 (2008) 4281–4307.  Zbl1145.65068
  5. S. Bartels, Stability and convergence of finite-element approximation schemes for harmonic maps. SIAM J. Numer. Anal.43 (2005) 220–238 (electronic).  Zbl1090.35014
  6. T. Baumgart, S.T. Hess and W.W. Webb, Imaging co-existing domains in biomembrane models coupling curvature and tension. Nature 425 (2003) 832–824.  
  7. T. Biben and C. Misbah, An advected-field model for deformable entities under flow. Eur. Phys. J. B 29 (2002) 311–316.  
  8. P. Biscari and E.M. Terentjev, Nematic membranes: Shape instabilities of closed achiral vesicles. Phys. Rev. E 73 (2006) 051706.  
  9. F. Brezzi and M. Fortin, Mixed and hybrid finite element methods, Springer Series in Computational Mathematics15. Springer-Verlag, New York, USA (1991).  Zbl0788.73002
  10. P.B. Canham, The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. J. Theort. Biol. 26 (1970) 61–81.  
  11. Y.M. Chen, The weak solutions to the evolution problems of harmonic maps. Math. Z.201 (1989) 69–74.  Zbl0685.58015
  12. C.H.A. Cheng, D. Coutand and S. Shkoller, Navier-Stokes equations interacting with a nonlinear elastic biofluid shell. SIAM J. Math. Anal.39 (2007) 742–800 (electronic).  Zbl1138.74022
  13. P.G. Ciarlet, The finite element method for elliptic problems, Classics in Applied Mathematics40. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, USA (2002). Reprint of the 1978 original [North-Holland, Amsterdam; MR0520174 (58 #25001)].  
  14. K. Deckelnick, G. Dziuk and C.M. Elliott, Computation of geometric partial differential equations and mean curvature flow. Acta Numer. 14 (2005) 139–232.  Zbl1113.65097
  15. Q. Du, C. Liu and X. Wang, A phase field approach in the numerical study of the elastic bending energy for vesicle membranes. J. Comput. Phys.198 (2004) 450–468.  Zbl1116.74384
  16. Q. Du, C. Liu and X. Wang, Simulating the deformation of vesicle membranes under elastic bending energy in three dimensions. J. Comput. Phys.212 (2006) 757–777.  Zbl1086.74024
  17. G. Dziuk, Computational parametric Willmore flow. Numer. Math.111 (2008) 55–80.  Zbl1158.65073
  18. E. Evans, Bending resistance and chemically induced moments in membrane bilayers. Biophys. J.14 (1974) 923–931.  
  19. J.B. Fournier and P. Galatoa, Sponges, tubules and modulated phases of para-antinematic membranes. J. Phys. II7 (1997) 1509–1520.  
  20. A. Freire, S. Müller and M. Struwe, Weak compactness of wave maps and harmonic maps. Ann. Inst. H. Poincaré Anal. Non Linéaire15 (1998) 725–754.  Zbl0924.58011
  21. M. Giaquinta and S. Hildebrandt, Calculus of variations I: The Lagrangian formalism, Grundlehren der Mathematischen Wissenschaften 310, [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, Germany (1996).  Zbl0853.49001
  22. P. Grisvard, Elliptic problems in nonsmooth domains, Monographs and Studies in Mathematics24. Pitman (Advanced Publishing Program), Boston, USA (1985).  Zbl0695.35060
  23. C. Grossmann and H.-G. Roos, Numerical treatment of partial differential equations. Universitext, Springer, Berlin, Germany (2007). Translated and revised from the 3rd (2005) German edition by Martin Stynes.  
  24. W. Helfrich, Elastic properties of lipid bilayers: theory and possible experiments. Z. Naturforsch. C28 (1973) 693–703.  
  25. W. Helfrich and J. Prost, Intrinsic bending force in anisotropic membranes made of chiral molecules. Phys. Rev. A38 (1988) 3065–3068.  
  26. J.T. Jenkins, The equations of mechanical equilibrium of a model membrane. SIAM J. Appl. Math.32 (1977) 755–764.  Zbl0358.73074
  27. M.A. Johnson and R.S. Decca, Dynamics of topological defects in the l β ' phase of 1,2-dipalmitoyl phosphatidylcholine bilayers. Opt. Commun.281 (2008) 1870–1875.  
  28. O.A. Ladyzhenskaya and N.N. Ural'tseva, Linear and quasilinear elliptic equations. Academic Press, New York, USA (1968). Translated from the Russian by Scripta Technica, Inc. Translation editor: Leon Ehrenpreis.  
  29. T. C. Lubensky and F.C. MacKintosh, Theory of “ripple” phases of bilayers. Phys. Rev. Lett.71 (1993) 1565–1568.  
  30. F.C. MacKintosh and T.C. Lubensky, Orientational order, topology, and vesicle shapes. Phys. Rev. Lett.67 (1991) 1169–1172.  Zbl0990.92502
  31. S.J. Marrink, J. Risselada and A.E. Mark, Simulation of gel phase formation and melting in lipid bilayers using a coarse grained model. Chem. Phys. Lipids135 (2005) 223–244.  
  32. S.T.-N.J.F. Nagle, Structure of lipid bilayers. Biochim. Biophys. Acta1469 (2000) 159–195.  
  33. P. Nelson and T. Powers, Rigid chiral membranes. Phys. Rev. Lett.69 (1992) 3409–3412.  
  34. R. Oda, I. Huc, M. Schmutz and S.J. Candau, Tuning bilayer twist using chiral counterions. Nature399 (1999) 566–569.  
  35. M.S. Pauletti, Parametric AFEM for geometric evolution equations coupled fluid-membrane interaction. Ph.D. Thesis, University of Maryland, USA (2008).  
  36. R.E. Rusu, An algorithm for the elastic flow of surfaces. Interfaces Free Bound.7 (2005) 229–239.  Zbl1210.35149
  37. U. Seifert, Configurations of fluid membranes and vesicles. Adv. Phys.46 (1997) 13–137.  
  38. J.V. Selinger and J.M. Schnur, Theory of chiral lipid tubules. Phys. Rev. Lett.71 (1993) 4091–4094.  
  39. D. Steigmann, Fluid films with curvature elasticity. Arch. Ration. Mech. Anal.150 (1999) 127–152.  Zbl0982.76012
  40. M. Struwe, Geometric evolution problems, in Nonlinear partial differential equations in differential geometry (Park City, UT, 1992), IAS/Park City Math. Ser.2, Amer. Math. Soc., Providence, USA (1996) 257–339.  
  41. N. Uchida, Dynamics of orientational ordering in fluid membranes. Phys. Rev. E66 (2002) 040902.  
  42. E.G. Virga, Variational theories for liquid crystals, Appl. Math. Math. Comput.8. Chapman & Hall, London, UK (1994).  Zbl0814.49002
  43. T.J. Willmore, Riemannian geometry, Oxford Science Publications. The Clarendon Press Oxford University Press, New York, USA (1993).  Zbl0797.53002

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.