Weak compactness of wave maps and harmonic maps
Stefan Müller; Michael Struwe; Alexandre Freire
Annales de l'I.H.P. Analyse non linéaire (1998)
- Volume: 15, Issue: 6, page 725-754
- ISSN: 0294-1449
Access Full Article
topHow to cite
topMüller, Stefan, Struwe, Michael, and Freire, Alexandre. "Weak compactness of wave maps and harmonic maps." Annales de l'I.H.P. Analyse non linéaire 15.6 (1998): 725-754. <http://eudml.org/doc/78454>.
@article{Müller1998,
author = {Müller, Stefan, Struwe, Michael, Freire, Alexandre},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {wave maps; Hodge structure; weak limits; Palais-Smale sequences; harmonic map functional; limits of almost -surfaces},
language = {eng},
number = {6},
pages = {725-754},
publisher = {Gauthier-Villars},
title = {Weak compactness of wave maps and harmonic maps},
url = {http://eudml.org/doc/78454},
volume = {15},
year = {1998},
}
TY - JOUR
AU - Müller, Stefan
AU - Struwe, Michael
AU - Freire, Alexandre
TI - Weak compactness of wave maps and harmonic maps
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1998
PB - Gauthier-Villars
VL - 15
IS - 6
SP - 725
EP - 754
LA - eng
KW - wave maps; Hodge structure; weak limits; Palais-Smale sequences; harmonic map functional; limits of almost -surfaces
UR - http://eudml.org/doc/78454
ER -
References
top- [1] F. Bethuel and J.-M. Ghiadaglia, Weak limits of solutions to the steady incompressible
- two-dimensional Euler equations in a bounded domain, Asympt. Anal., Vol. 8, 1994, pp. 277-291. Zbl0808.76014MR1288610
- [2] F. Bethuel, Weak convergence of Palais-Smale sequences for some critical functionals, Calc. Var., Vol. 1, 1993, pp. 267-310. Zbl0812.58018MR1261547
- [3] F. Bethuel, On the singular set of stationary harmonic maps, manusc. math., Vol. 78, 1993, pp. 417-443. Zbl0792.53039MR1208652
- [4] S. Campanato, Sistemi ellittiche del secondo ordine e spazi L2.λ, Ann. Mat. Pura Appl., Vol. 69, 1965, pp. 321-380. Zbl0145.36603MR192168
- [5] D. Christodoulou and A.S. Tahvildar-Zadeh, On the regularity of spherically symmetric wave maps, Comm. Pure Appl. Math., Vol. 46, 1993, pp. 1041-1091. Zbl0744.58071MR1223662
- [6] R. Coifman, P.-L. Lions, Y. Meyer and S. Semmes, Compensated compactness and Hardy spaces, J. Math. Pures Appl., Vol. 72, 1993, pp. 247-286. Zbl0864.42009MR1225511
- [7] R. Diperna and A. Majda, Reduced Hausdorff dimension and concentration cancellation for two-dimensional incompressible flows, J. Amer. Math. Soc., Vol. 1. 1988, pp. 59-95. Zbl0707.76026MR924702
- [8] L.C. Evans, Partial regularity for stationary harmonic maps into spheres, Arch. Rat. Mech. Anal., Vol. 116, 1991, 101-113. Zbl0754.58007MR1143435
- [9] C. Fefferman and E.M. Stein, Hp spaces of several variables, Acta Math., Vol. 129, 1972, pp. 137-193. Zbl0257.46078MR447953
- [10] J. Frehse, Capacity methods in the theory of partial differential equations, Jahresb. Dt. Math. Ver., Vol. 84, 1982, pp. 1-44. Zbl0486.35002MR644068
- [11] A. Freire, Global weak solutions of the wave map system to compact homogeneous spaces, manuscripta math., Vol. 91, 1996, pp. 525-533. Zbl0867.58019MR1421290
- [12] A. Freire, S. Müller and M. Struwe, Weak convergence of wave maps from (2+1) dimensional Minkowski space to Riemannian manifolds, Invent. Math., Vol. 130, 1997, pp. 589-617. Zbl0906.35061MR1483995
- [13] M. Giaquinta, Introduction to regularity theory for nonlinear elliptic systems, Lectures in Mathematics, Birkhäuser, 1993. Zbl0786.35001MR1239172
- [14] D. Goldberg, A local version of the Hardy space, Duke Math. J., Vol. 46, 1979, pp. 27-42. Zbl0409.46060MR523600
- [15] E. Heinz, Elementare Bemerkung zur isoperimetrischen Ungleichung im R3, Math. Z., Vol. 132, 1973, pp. 319-322. Zbl0251.52014MR323976
- [16] F. Hélein, Régularité des applications faiblement harmoniques entre une surface et une variété Riemannienne, C. R. Acad. Sci. Paris Ser. I Math., Vol. 312, 1991, pp. 591-596. Zbl0728.35015MR1101039
- [17] S. Klainerman and M. Machedon, Space-time estimates for null forms and the local existence theorem, Comm. Pure Appl. Math., Vol. 46, 1993, pp. 1221-1268. Zbl0803.35095MR1231427
- [18] S. Klainerman and M. Machedon, Smoothing estimates for null forms and applications, Int. Math. Res. Not., Vol. 4, 1994, pp. 383-389. Zbl0832.35096MR1301438
- [19] P.-L. Lions, The concentration compactness principle in the calculus of variations, the limit case, Part 2 , Rev. Mat. Iberoam., Vol. 1/2 , 1985, pp. 45-121. Zbl0704.49006MR850686
- [20] E.J. Nussenzweig Lopes, An estimate on the Hausdorff dimension of a concentration set for the incompressible 2-D Euler equations, Indiana Univ. Math. J., Vol. 43, 1994, pp. 521-534. Zbl0807.35113MR1291527
- [21] S. Müller and M. Struwe, Global existence of wave maps in 1+2 dimensions for finite energy data, Top. Methods Nonlinear Analysis, Vol. 7, 1996, pp. 245-259. Zbl0896.35086MR1481698
- [22] S. Müller, M. Struwe and V. Šverák, Harmonic maps on planar lattices, Ann. SNS Pisa, to appear. Zbl1004.58007
- [23] S. Müller and M. Struwe, Spatially discrete wave maps on (1+2)-dimensional space-time, Top. Methods Nonlinear Analysis, to appear. Zbl0933.58020
- [24] S. Semmes, A primer on Hardy spaces, and some remarks on a theorem of Evans and Müller, Conun. P.D.E., Vol. 19, 1994, 277-319. Zbl0836.35030MR1257006
- [25] J. Shatah, Weak solutions and development of singularities in the SU (2) σ-model, Comm. Pure Appl. Math., Vol. 41, 1988, pp. 459-469. Zbl0686.35081MR933231
- [26] J. Shatah and A.S. Tahvildar-Zadeh, On the Cauchy problem for equivariant wave maps, Comm. Pure Appl. Math., Vol. 45, 1992, pp. 947-971. Zbl0769.58015MR1168115
- [27] E. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, 1970. Zbl0207.13501MR290095
- [28] E. Stein, Harmonic analysis, Princeton Univ. Press, 1993. Zbl0821.42001MR1232192
- [29] M. Struwe, Wave maps, in: Nonlinear partial differential equations in geometry and physics-Barrett Lectures1995 (Eds. G. Baker et al.), Birkhäuser, 1997, pp. 113-153. Zbl0869.53017MR1437153
- [30] L. Tartar, Remarks on oscillations and Stokes's equation, in: Macroscopic modelling of turbulent flows (Nice, 1984), Lect. Notes Phys., Vol. 230, Springer, 1985, pp. 24-31. Zbl0611.76042MR815930
- [31] H.C. Wente, An existence theorem for surfaces of constant mean curvature, J. Math. Anal. Appl., Vol. 26, 1969, pp. 318-344. Zbl0181.11501MR243467
- [32] Y. Zheng, Regularity of solutions to a two dimensional modified Dirac-Klein-Gordon system of equations, Comm. Math. Phys., Vol. 151, 1993, pp. 67-87. Zbl0765.35046MR1201656
- [33] Yi Zhou, Global weak solutions for the 2 + 1 dimensional wave maps with small energy, preprint, 1995.
- [34] Yi Zhou, Global weak solutions for 1 + 2 dimensional wave maps into homogeneous spaces, Ann. IHP-Analyse non linéaire, to appear. Zbl0997.58012
Citations in EuDML Documents
top- Sören Bartels, Georg Dolzmann, Ricardo H. Nochetto, A finite element scheme for the evolution of orientational order in fluid membranes
- Michael Struwe, Recent existence and regularity results for wave maps
- Terence Tao, Geometric renormalization of large energy wave maps
- Shenzhou Zheng, A compactness result for polyharmonic maps in the critical dimension
- Chang You Wang, A compactness theorem of n-harmonic maps
- Tristan Rivière, Lois de conservation pour les problèmes invariants conformes et les equations de Schrödinger à potentiels antisymetriques
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.