Large deviations and full Edgeworth expansions for finite Markov chains with applications to the analysis of genomic sequences
ESAIM: Probability and Statistics (2010)
- Volume: 14, page 435-455
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topReferences
top- C. Andriani and P. Baldi, Sharp estimates of deviations of the sample mean in many dimensions. Ann. Inst. H. Poincaré Probab. Statist.33 (1997) 371–385. Zbl0882.60022
- R.R. Bahadur and R.R. Rao, On deviations of the sample mean. Ann. Math. Statist.31 (1960) 1015–1027. Zbl0101.12603
- P. Barbe and M. Broniatowski, Large-deviation probability and the local dimension of sets, in Proceedings of the 19th Seminar on Stability Problems for Stochastic Models, Vologda, 1998, Part I. (2000), Vol. 99, pp. 1225–1233. Zbl0962.60011
- N.R. Chaganty and J. Sethuraman, Strong large deviation and local limit theorems. Ann. Probab.21 (1993) 1671–1690. Zbl0786.60026
- S. Datta and W.P. McCormick, On the first-order Edgeworth expansion for a Markov chain. J. Multivariate Anal.44 (1993) 345–359. Zbl0770.60023
- A. Dembo and O. Zeitouni, Large deviations techniques and applications. Volume 38 of Appl. Math. (New York). Second edition. Springer-Verlag, New York (1998). Zbl0896.60013
- P. Flajolet, W. Szpankowski and B. Vallée, Hidden word statistics. J. ACM53 (2006) 147–183 (electronic). Zbl1316.68111
- M. Iltis, Sharp asymptotics of large deviations in Rd. J. Theoret. Probab.8 (1995) 501–522. Zbl0831.60042
- M. Iltis, Sharp asymptotics of large deviations for general state-space Markov-additive chains in Rd. Statist. Probab. Lett.47 (2000) 365–380. Zbl0988.60012
- I. Iscoe, P. Ney and E. Nummelin, Large deviations of uniformly recurrent Markov additive processes. Adv. Appl. Math.6 (1985) 373–412. Zbl0602.60034
- J.L. Jensen, Saddlepoint approximations. The Clarendon Press Oxford University Press, New York (1995). Zbl1274.62008
- V. Kargin, A large deviation inequality for vector functions on finite reversible Markov chains. Ann. Appl. Probab.17 (2007) 1202–1221. Zbl1131.60067
- K. Knopp, Theory of Functions, Part I. Elements of the General Theory of Analytic Functions. Dover Publications, New York (1945).
- I. Kontoyiannis and S.P. Meyn, Spectral theory and limit theorems for geometrically ergodic Markov processes. Ann. Appl. Probab.13 (2003) 304–362. Zbl1016.60066
- C.A. León and F. Perron, Optimal Hoeffding bounds for discrete reversible Markov chains. Ann. Appl. Probab.14 (2004) 958–970. Zbl1056.60070
- M.E. Lladser, M.D. Betterton and R. Knight, Multiple pattern matching: a Markov chain approach. J. Math. Biol.56 (2008) 51–92. Zbl1147.65005
- B. Mann, Berry-Esseen Central Limit Theorems For Markov Chains. Ph.D. thesis, Harvard University, 1996.
- H.D. Miller, A convexivity property in the theory of random variables defined on a finite Markov chain. Ann. Math. Statist.32 (1961) 1260–1270. Zbl0108.15101
- P. Ney, Dominating points and the asymptotics of large deviations for random walk on Rd. Ann. Probab.11 (1983) 158–167. Zbl0503.60035
- P. Ney and E. Nummelin, Markov additive processes, Part I. Eigenvalue properties and limit theorems. Ann. Probab.15 (1987) 561–592. Zbl0625.60027
- P. Nicodème, B. Salvy and P. Flajolet, Motif statistics. In Algorithms – ESA '99, Prague. Lect. Notes Comput. Sci.1643. Springer, Berlin (1999), pp 194–211. Zbl0944.92013
- G. Nuel, Numerical solutins for Patterns Statistics on Markov chains. Stat. Appl. Genet. Mol. Biol.5 (2006).
- G. Nuel, Pattern Markov chains: optimal Markov chain embedding through deterministic finite automata. J. Appl. Probab.45 (2008) 226–243. Zbl1142.65010
- R Development Core Team, R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2003). ISBN 3-900051-00-3.
- M. Régnier, A unified approach to word occurrence probabilities. Discrete Appl. Math.104 (2000) 259–280, Combinatorial molecular biology. Zbl0987.92017
- M. Régnier and A. Denise, Rare events and conditional events on random strings. Discrete Math. Theor. Comput. Sci.6 (2004) 191–213 (electronic). Zbl1059.05008
- M. Régnier and W. Szpankowski, On pattern frequency occurrences in a Markovian sequence. Algorithmica22 (1998) 631–649. Zbl0918.68108
- G. Reinert, S. Schbath and M.S. Waterman, Applied Combinatorics on Words. In Encyclopedia of Mathematics and its Applications, Vol. 105, chap. Statistics on Words with Applications to Biological Sequences. Cambridge University Press (2005).
- S. Robin and J.-J. Daudin, Exact distribution of word occurrences in a random sequence of letters. J. Appl. Probab.36 (1999) 179–193. Zbl0945.60008
- E. Roquain and S. Schbath, Improved compound Poisson approximation for the number of occurrences of any rare word family in a stationary Markov chain. Adv. Appl. Probab.39 (2007) 128–140. Zbl1109.62012
- S. Schbath, Compound Poisson approximation of word counts in DNA sequences. ESAIM: PS1 (1997) 1–16. Zbl0869.60067
- D. Serre, Matrices, volume 216 of Graduate Texts Math.. Springer-Verlag, New York (2002). Theory and applications, translated from the 2001 French original.
- V.T. Stefanov, S. Robin and S. Schbath, Waiting times for clumps of patterns and for structured motifs in random sequences. Discrete Appl. Math.155 (2007) 868–880. Zbl1112.60055