### A card shuffling analysis of deformations of the Plancherel measure of the symmetric group.

Skip to main content (access key 's'),
Skip to navigation (access key 'n'),
Accessibility information (access key '0')

A pointed quasigroup is said to be semicentral if it is principally isotopic to a group via a permutation on one side and a group automorphism on the other. Convex combinations of permutation matrices given by the one-sided multiplications in a semicentral quasigroup then yield doubly stochastic transition matrices of finite Markov chains in which the entropic behaviour at any time is independent of the initial state.

In this paper, we study the limit properties of countable nonhomogeneous Markov chains in the generalized gambling system by means of constructing compatible distributions and martingales. By allowing random selection functions to take values in arbitrary intervals, the concept of random selection is generalized. As corollaries, some strong limit theorems and the asymptotic equipartition property (AEP) theorems for countable nonhomogeneous Markov chains in the generalized gambling system are established....

One usually studies the random walk model of a cat moving from one room to another in an apartment. Imagine now that the cat also has the possibility to go from one apartment to another by crossing some corridors, or even from one building to another. That yields a new probabilistic model for which each corridor connects the entrance rooms of several apartments. This article computes the determinant of the stochastic matrix associated to such random walks. That new model naturally allows to compute...

Using the natural extensions for the Rosen maps, we give an infinite-order-chain representation of the sequence of the incomplete quotients of the Rosen fractions. Together with the ergodic behaviour of a certain homogeneous random system with complete connections, this allows us to solve a variant of Gauss-Kuzmin problem for the above fraction expansion.

With the aid of Markov Chain Monte Carlo methods we can sample even from complex multi-dimensional distributions which cannot be exactly calculated. Thus, an application to the problem of knowledge integration (e. g. in expert systems) is straightforward.