Well-posedness of a thermo-mechanical model for shape memory alloys under tension

Pavel Krejčí; Ulisse Stefanelli

ESAIM: Mathematical Modelling and Numerical Analysis (2010)

  • Volume: 44, Issue: 6, page 1239-1253
  • ISSN: 0764-583X

Abstract

top
We present a model of the full thermo-mechanical evolution of a shape memory body undergoing a uniaxial tensile stress. The well-posedness of the related quasi-static thermo-inelastic problem is addressed by means of hysteresis operators techniques. As a by-product, details on a time-discretization of the problem are provided.

How to cite

top

Krejčí, Pavel, and Stefanelli, Ulisse. "Well-posedness of a thermo-mechanical model for shape memory alloys under tension." ESAIM: Mathematical Modelling and Numerical Analysis 44.6 (2010): 1239-1253. <http://eudml.org/doc/250838>.

@article{Krejčí2010,
abstract = { We present a model of the full thermo-mechanical evolution of a shape memory body undergoing a uniaxial tensile stress. The well-posedness of the related quasi-static thermo-inelastic problem is addressed by means of hysteresis operators techniques. As a by-product, details on a time-discretization of the problem are provided. },
author = {Krejčí, Pavel, Stefanelli, Ulisse},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Shape memory alloys; thermo-mechanics; well-posedness; hysteresis operator; shape memory alloys},
language = {eng},
month = {10},
number = {6},
pages = {1239-1253},
publisher = {EDP Sciences},
title = {Well-posedness of a thermo-mechanical model for shape memory alloys under tension},
url = {http://eudml.org/doc/250838},
volume = {44},
year = {2010},
}

TY - JOUR
AU - Krejčí, Pavel
AU - Stefanelli, Ulisse
TI - Well-posedness of a thermo-mechanical model for shape memory alloys under tension
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2010/10//
PB - EDP Sciences
VL - 44
IS - 6
SP - 1239
EP - 1253
AB - We present a model of the full thermo-mechanical evolution of a shape memory body undergoing a uniaxial tensile stress. The well-posedness of the related quasi-static thermo-inelastic problem is addressed by means of hysteresis operators techniques. As a by-product, details on a time-discretization of the problem are provided.
LA - eng
KW - Shape memory alloys; thermo-mechanics; well-posedness; hysteresis operator; shape memory alloys
UR - http://eudml.org/doc/250838
ER -

References

top
  1. T. Aiki, A model of 3D shape memory alloy materials. J. Math. Soc. Jpn.57 (2005) 903–933.  Zbl1076.74041
  2. M. Arndt, M. Griebel and T. Roubíček, Modelling and numerical simulation of martensitic transformation in shape memory alloys. Contin. Mech. Thermodyn.15 (2003) 463–485.  Zbl1068.74588
  3. F. Auricchio and L. Petrini, Improvements and algorithmical considerations on a recent three-dimensional model describing stress-induced solid phase transformations. Int. J. Numer. Methods Eng.55 (2002) 1255–1284.  Zbl1062.74580
  4. F. Auricchio and L. Petrini, A three-dimensional model describing stress-temperature induced solid phase transformations. Part I: Solution algorithm and boundary value problems. Int. J. Numer. Methods Eng.61 (2004) 807–836.  Zbl1075.74599
  5. F. Auricchio and L. Petrini, A three-dimensional model describing stress-temperature induced solid phase transformations. Part II: Thermomechanical coupling and hybrid composite applications. Int. J. Numer. Methods Eng.61 (2004) 716–737.  Zbl1075.74598
  6. F. Auricchio and E. Sacco, A one-dimensional model for superelastic shape-memory alloys with different elastic properties between austenite and martensite. Int. J. Non-Linear Mech.32 (1997) 1101–1114.  Zbl0906.73006
  7. F. Auricchio, A. Reali and U. Stefanelli, A phenomenological 3D model describing stress-induced solid phase transformations with permanent inelasticity, in Topics on Mathematics for Smart Systems (Rome, 2006), World Sci. Publishing (2007) 1–14.  Zbl1113.74053
  8. F. Auricchio, A. Reali and U. Stefanelli, A three-dimensional model describing stress-induced solid phase transformation with permanent inelasticity. Int. J. Plast.23 (2007) 207–226.  Zbl1105.74031
  9. F. Auricchio, A. Mielke and U. Stefanelli, A rate-independent model for the isothermal quasi-static evolution of shape-memory materials. Math. Models Meth. Appl. Sci.18 (2008) 125–164.  Zbl1151.74319
  10. F. Auricchio, A. Reali and U. Stefanelli, A macroscopic 1D model for shape memory alloys including asymmetric behaviors and transformation-dependent elastic properties. Comput. Methods Appl. Mech. Eng.198 (2009) 1631–1637.  Zbl1227.74037
  11. A.-L. Bessoud and U. Stefanelli, A three-dimensional model for magnetic shape memory alloys. Preprint IMATI-CNR 27PV09/20/0 (2009).  Zbl1317.74021
  12. M. Brokate and J. Sprekels, Hysteresis and phase transitions, Applied Mathematical Sciences121. Springer-Verlag, New York (1996).  Zbl0951.74002
  13. P. Colli, Global existence for the three-dimensional Frémond model of shape memory alloys. Nonlinear Anal.24 (1995) 1565–1579.  Zbl0832.35066
  14. P. Colli and J. Sprekels, Global existence for a three-dimensional model for the thermodynamical evolution of shape memory alloys. Nonlinear Anal.18 (1992) 873–888.  Zbl0766.35062
  15. T.W. Duerig, A.R. Pelton, Eds., SMST-2003 Proceedings of the International Conference on Shape Memory and Superelastic Technology Conference. ASM International (2003).  
  16. T.W. Duerig, K.N. Melton, D. Stökel and C.M. Wayman, Eds., Engineering aspects of shape memory alloys. Butterworth-Heinemann (1990).  
  17. F. Falk, Martensitic domain boundaries in shape-memory alloys as solitary waves. J. Phys. C4 Suppl.12 (1982) 3–15.  
  18. F. Falk and P. Konopka, Three-dimensional Landau theory describing the martensitic phase transformation of shape-memory alloys. J. Phys. Condens. Matter2 (1990) 61–77.  
  19. M. Frémond, Matériaux à mémoire de forme. C. R. Acad. Sci. Paris Sér. II Méc. Phys. Chim. Sci. Univers Sci. Terre304 (1987) 239–244.  
  20. M. Frémond, Non-smooth Thermomechanics. Springer-Verlag, Berlin (2002).  Zbl0990.80001
  21. S. Govindjee and C. Miehe, A multi-variant martensitic phase transformation model: formulation and numerical implementation. Comput. Methods Appl. Mech. Eng.191 (2001) 215–238.  Zbl1007.74061
  22. D. Helm and P. Haupt, Shape memory behaviour: modelling within continuum thermomechanics. Int. J. Solids Struct.40 (2003) 827–849.  Zbl1025.74022
  23. M. Hilpert, On uniqueness for evolution problems with hysteresis, in Mathematical Models for Phase Change Problems, J.F. Rodrigues Ed., Birkhäuser, Basel (1989) 377–388.  
  24. K.H. Hoffmann, M. Niezgódka and S. Zheng, Existence and uniqueness to an extended model of the dynamical developments in shape memory alloys. Nonlinear Anal.15 (1990) 977–990.  Zbl0728.35055
  25. P. Krejčí, Hysteresis, Convexity and Dissipation in Hyperbolic Equations, GAKUTO Int. Series Math. Sci. Appl.8. Gakkotosho, Tokyo (1996).  
  26. P. Krejčí and U. Stefanelli, Existence and nonexistence for the full thermomechanical Souza-Auricchio model of shape memory wires. Preprint, IMATI-CNR, 12PV09/10/0 (2009).  Zbl1269.74169
  27. D.C. Lagoudas, P.B. Entchev, P. Popov, E. Patoor, L.C. Brinson and X. Gao, Shape memory alloys, Part II: Modeling of polycrystals. Mech. Materials38 (2006) 391–429.  
  28. V.I. Levitas, Thermomechanical theory of martensitic phase transformations in inelastic materials. Int. J. Solids Struct.35 (1998) 889–940.  Zbl0931.74059
  29. G.A. Maugin, The thermomechanics of plasticity and fracture, Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (1992).  
  30. A. Mielke and A. Petrov, Thermally driven phase transformation in shape-memory alloys. Adv. Math. Sci. Appl.17 (2007) 160–182.  Zbl1138.49014
  31. A. Mielke, L. Paoli and A. Petrov, On existence and approximation for a 3D model of thermally-induced phase transformations in shape-memory alloys. SIAM J. Math. Anal.41 (2009) 1388–1414.  Zbl1201.49011
  32. A. Mielke, L. Paoli, A. Petrov and U. Stefanelli, Error estimates for discretizations of a rate-independent variational inequality. WIAS Preprint n. 1407 (2009).  Zbl1219.65059
  33. A. Mielke, L. Paoli, A. Petrov and U. Stefanelli, Error control for space-time discretizations of a 3D model for shape-memory materials, in Proceedings of the IUTAM Symposium on Variational Concepts with Applications to the Mechanics of Materials (Bochum 2008), IUTAM Bookseries, Springer (2009).  
  34. I. Pawłow, Three-dimensional model of thermomechanical evolution of shape memory materials. Control Cybernet.29 (2000) 341–365.  Zbl1205.74140
  35. B. Peultier, T. Ben Zineb and E. Patoor, Macroscopic constitutive law for SMA: Application to structure analysis by FEM. Materials Sci. Eng. A438–440 (2006) 454–458.  
  36. P. Popov and D.C. Lagoudas, A 3-D constitutive model for shape memory alloys incorporating pseudoelasticity and detwinning of self-accommodated martensite. Int. J. Plast.23 (2007) 1679–1720.  Zbl1127.74008
  37. B. Raniecki and Ch. Lexcellent, RL models of pseudoelasticity and their specification for some shape-memory solids. Eur. J. Mech. A Solids13 (1994) 21–50.  Zbl0795.73010
  38. S. Reese and D. Christ, Finite deformation pseudo-elasticity of shape memory alloys – Constitutive modelling and finite element implementation. Int. J. Plast.28 (2008) 455–482.  Zbl1145.74005
  39. T. Roubíček, Models of microstructure evolution in shape memory alloys, in Nonlinear Homogenization and its Appl. to Composites, Polycrystals and Smart Materials, P. Ponte Castaneda, J.J. Telega, B. Gambin Eds., NATO Sci. Series II/170, Kluwer, Dordrecht (2004) 269–304.  Zbl1320.74087
  40. A.C. Souza, E.N. Mamiya and N. Zouain, Three-dimensional model for solids undergoing stress-induced phase transformations. Eur. J. Mech. A Solids17 (1998) 789–806.  Zbl0921.73024
  41. U. Stefanelli, Analysis of a variable time-step discretization for the Penrose-Fife phase relaxation problem. Nonlinear Anal.45 (2001) 213–240.  Zbl0983.65101
  42. P. Thamburaja and L. Anand, Polycrystalline shape-memory materials: effect of crystallographic texture. J. Mech. Phys. Solids49 (2001) 709–737.  Zbl1011.74049
  43. F. Thiebaud, Ch. Lexcellent, M. Collet and E. Foltete, Implementation of a model taking into account the asymmetry between tension and compression, the temperature effects in a finite element code for shape memory alloys structures calculations. Comput. Materials Sci.41 (2007) 208–221.  
  44. A. Visintin, Differential Models of Hysteresis, Applied Mathematical Sciences111. Springer, Berlin (1994).  Zbl0820.35004
  45. S. Yoshikawa, I. Pawłow and W.M. Zajączkowski, Quasi-linear thermoelasticity system arising in shape memory materials. SIAM J. Math. Anal.38 (2007) 1733–1759.  Zbl1131.35083

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.