Analysis of a time discretization scheme for a nonstandard viscous Cahn–Hilliard system
Pierluigi Colli; Gianni Gilardi; Pavel Krejčí; Paolo Podio-Guidugli; Jürgen Sprekels
- Volume: 48, Issue: 4, page 1061-1087
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topColli, Pierluigi, et al. "Analysis of a time discretization scheme for a nonstandard viscous Cahn–Hilliard system." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 48.4 (2014): 1061-1087. <http://eudml.org/doc/273110>.
@article{Colli2014,
abstract = {In this paper we propose a time discretization of a system of two parabolic equations describing diffusion-driven atom rearrangement in crystalline matter. The equations express the balances of microforces and microenergy; the two phase fields are the order parameter and the chemical potential. The initial and boundary-value problem for the evolutionary system is known to be well posed. Convergence of the discrete scheme to the solution of the continuous problem is proved by a careful development of uniform estimates, by weak compactness and a suitable treatment of nonlinearities. Moreover, for the difference of discrete and continuous solutions we prove an error estimate of order one with respect to the time step.},
author = {Colli, Pierluigi, Gilardi, Gianni, Krejčí, Pavel, Podio-Guidugli, Paolo, Sprekels, Jürgen},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Cahn–Hilliard equation; phase field model; time discretization; convergence; error estimates},
language = {eng},
number = {4},
pages = {1061-1087},
publisher = {EDP-Sciences},
title = {Analysis of a time discretization scheme for a nonstandard viscous Cahn–Hilliard system},
url = {http://eudml.org/doc/273110},
volume = {48},
year = {2014},
}
TY - JOUR
AU - Colli, Pierluigi
AU - Gilardi, Gianni
AU - Krejčí, Pavel
AU - Podio-Guidugli, Paolo
AU - Sprekels, Jürgen
TI - Analysis of a time discretization scheme for a nonstandard viscous Cahn–Hilliard system
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2014
PB - EDP-Sciences
VL - 48
IS - 4
SP - 1061
EP - 1087
AB - In this paper we propose a time discretization of a system of two parabolic equations describing diffusion-driven atom rearrangement in crystalline matter. The equations express the balances of microforces and microenergy; the two phase fields are the order parameter and the chemical potential. The initial and boundary-value problem for the evolutionary system is known to be well posed. Convergence of the discrete scheme to the solution of the continuous problem is proved by a careful development of uniform estimates, by weak compactness and a suitable treatment of nonlinearities. Moreover, for the difference of discrete and continuous solutions we prove an error estimate of order one with respect to the time step.
LA - eng
KW - Cahn–Hilliard equation; phase field model; time discretization; convergence; error estimates
UR - http://eudml.org/doc/273110
ER -
References
top- [1] F. Bai, C.M. Elliott, A. Gardiner, A. Spence and A.M. Stuart, The viscous Cahn-Hilliard equation. I. Computations. Nonlinearity8 (1995) 131–160. Zbl0818.35045MR1328591
- [2] J.W. Barrett and J.F. Blowey, An error bound for the finite element approximation of the Cahn-Hilliard equation with logarithmic free energy. Numer. Math.72 (1995) 1–20. Zbl0851.65070MR1359705
- [3] J.W. Barrett and J.F. Blowey, An improved error bound for a finite element approximation of a model for phase separation of a multi-component alloy with a concentration dependent mobility matrix. Numer. Math.88 (2001) 255–297. Zbl0990.65105MR1826854
- [4] J.W. Barrett, J.F. Blowey and H. Garcke, Finite element approximation of the Cahn-Hilliard equation with degenerate mobility. SIAM J. Numer. Anal.37 (1999) 286–318. Zbl0947.65109MR1742748
- [5] J.W. Barrett, J.F. Blowey and H. Garcke, On fully practical finite element approximations of degenerate Cahn-Hilliard systems. ESAIM: M2AN 35 (2001) 713–748. Zbl0987.35071MR1863277
- [6] S. Bartels and R. Müller, A posteriori error controlled local resolution of evolving interfaces for generalized Cahn-Hilliard equations. Interfaces Free Bound.12 (2010) 45–73. Zbl05690537MR2595377
- [7] S. Bartels and R. Müller, Error control for the approximation of Allen-Cahn and Cahn-Hilliard equations with a logarithmic potential. Numer. Math.119 (2011) 409–435. Zbl1241.65075MR2845623
- [8] J.F. Blowey and C.M. Elliott, The Cahn-Hilliard gradient theory for phase separation with nonsmooth free energy. II. Numerical analysis. Eur. J. Appl. Math. 3 (1992) 147–179. Zbl0810.35158MR1166255
- [9] E. Bonetti, Global solvability of a dissipative Frémond model for shape memory alloys. II. Existence. Quart. Appl. Math.62 (2004) 53–76. Zbl1073.35140MR2032572
- [10] H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Mathematics Studies, no. 5. Notas de Matemática. North-Holland Publishing Co., Amsterdam (1973). Zbl0252.47055MR348562
- [11] C. Carstensen and P. Plecháč, Numerical analysis of a relaxed variational model of hysteresis in two-phase solids. ESAIM: M2AN 35 (2001) 865–878. Zbl1007.74062MR1866271
- [12] Z. Chen, R.H. Nochetto and A. Schmidt, Error control and adaptivity for a phase relaxation model. ESAIM: M2AN 34 (2000) 775–797. Zbl0965.65114MR1784485
- [13] L. Cherfils, M. Petcu and M. Pierre, A numerical analysis of the Cahn-Hilliard equation with dynamic boundary conditions. Discrete Contin. Dyn. Syst.27 (2010) 1511–1533. Zbl1204.65113MR2629535
- [14] E. Chiodaroli, A dissipative model for hydrogen storage: existence and regularity results. Math. Methods Appl. Sci.34 (2011) 642–669. Zbl1217.35182MR2814720
- [15] P. Colli, M. Frémond and O. Klein, Global existence of a solution to a phase field model for supercooling. Nonlinear Anal. Real World Appl.2 (2001) 523–539. Zbl0998.80005MR1858904
- [16] P. Colli, G. Gilardi, P. Podio-Guidugli and J. Sprekels, Well-posedness and long-time behavior for a nonstandard viscous Cahn-Hilliard system. SIAM J. Appl. Math.71 (2011) 1849–1870. Zbl1331.74011MR2861103
- [17] P. Colli, G. Gilardi, P. Podio-Guidugli and J. Sprekels, Global existence and uniqueness for a singular/degenerate Cahn–Hilliard system with viscosity. J. Differ. Equ.254 (2013) 4217–4244. Zbl1325.35105MR3035431
- [18] C. Eck, B. Jadamba and P. Knabner, Error estimates for a finite element discretization of a phase field model for mixtures. SIAM J. Numer. Anal.47 (2010) 4429–4445. Zbl1215.65151MR2595043
- [19] S. Frigeri, P. Krejčí and U. Stefanelli, Quasistatic isothermal evolution of shape memory alloys. Math. Models Methods Appl. Sci.21 (2011) 2409–2432. Zbl1326.74108MR2864636
- [20] G. Gilardi and U. Stefanelli, Time-discretization and global solution for a doubly nonlinear Volterra equation. J. Differ. Equ.228 (2006) 707–736. Zbl1104.45005MR2289551
- [21] C. Gräser and R. Kornhuber, Multigrid methods for obstacle problems. J. Comput. Math.27 (2009) 1–44. Zbl1199.65401MR2493556
- [22] C. Gräser and R. Kornhuber, Nonsmooth Newton methods for set-valued saddle point problems. SIAM J. Numer. Anal.47 (2009) 1251–1273. Zbl1190.49035MR2485452
- [23] C. Gräser, R. Kornhuber and U. Sack, Nonsmooth Schur-Newton methods for vector-valued Cahn-Hilliard equations. Freie Universität Berlin, Fachbereich Mathematik und Informatik, Serie A Preprint no. 01 (2013) 1–16. Zbl1316.65086
- [24] J.W. Jerome, Approximation of nonlinear evolution systems, vol. 164 of Math. Sci. Eng. Academic Press Inc., Orlando, FL (1983). Zbl0512.35001MR690582
- [25] D. Kessler and J.-F. Scheid, A priori error estimates of a finite-element method for an isothermal phase-field model related to the solidification process of a binary alloy. IMA J. Numer. Anal.22 (2002) 281–305. Zbl1001.76057MR1897410
- [26] J. Kim, Phase-field models for multi-component fluid flows. Commun. Comput. Phys.12 (2012) 613–661. MR2903596
- [27] P. Krejčí and U. Stefanelli, Well-posedness of a thermo-mechanical model for shape memory alloys under tension. ESAIM: M2AN 44 (2010) 1239–1253. Zbl05835020MR2769056
- [28] A. Mielke, L. Paoli and A. Petrov, On existence and approximation for a 3D model of thermally induced phase transformations in shape-memory alloys. SIAM J. Math. Anal.41 (2009) 1388–1414. Zbl1201.49011MR2540271
- [29] P. Podio-Guidugli, Models of phase segregation and diffusion of atomic species on a lattice. Ric. Mat.55 (2006) 105–118. Zbl1150.74091MR2248166
- [30] M. Röger, Existence of weak solutions for the Mullins-Sekerka flow. SIAM J. Math. Anal.37 (2005) 291–301. Zbl1088.49031MR2176933
- [31] A. Segatti, Error estimates for a variable time-step discretization of a phase transition model with hyperbolic momentum. Numer. Funct. Anal. Optim.25 (2004) 547–569. Zbl1064.74084MR2106275
- [32] J. Simon, Compact sets in the space Lp(0,T;B). Ann. Mat. Pura Appl.146 (1987) 65–96. Zbl0629.46031MR916688
- [33] U. Stefanelli, Error control of a nonlinear evolution problem related to phase transitions. Numer. Funct. Anal. Optim.20 (1999) 585–608. Zbl0936.65112MR1704962
- [34] U. Stefanelli, Error control for a time-discretization of the full one-dimensional Frémond model for shape memory alloys. Adv. Math. Sci. Appl.10 (2000) 917–936. Zbl0980.65097MR1807457
- [35] U. Stefanelli, Analysis of a variable time-step discretization for a phase transition model with micro-movements. Commun. Pure Appl. Anal.5 (2006) 657–671. Zbl1141.35035MR2217596
- [36] C.L.D. Vaz, Rothe’s method for an isothermal phase-field model of a binary alloy with convection. Mat. Contemp.32 (2007) 221–251. Zbl1206.80018MR2428435
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.