Analysis of a time discretization scheme for a nonstandard viscous Cahn–Hilliard system

Pierluigi Colli; Gianni Gilardi; Pavel Krejčí; Paolo Podio-Guidugli; Jürgen Sprekels

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2014)

  • Volume: 48, Issue: 4, page 1061-1087
  • ISSN: 0764-583X

Abstract

top
In this paper we propose a time discretization of a system of two parabolic equations describing diffusion-driven atom rearrangement in crystalline matter. The equations express the balances of microforces and microenergy; the two phase fields are the order parameter and the chemical potential. The initial and boundary-value problem for the evolutionary system is known to be well posed. Convergence of the discrete scheme to the solution of the continuous problem is proved by a careful development of uniform estimates, by weak compactness and a suitable treatment of nonlinearities. Moreover, for the difference of discrete and continuous solutions we prove an error estimate of order one with respect to the time step.

How to cite

top

Colli, Pierluigi, et al. "Analysis of a time discretization scheme for a nonstandard viscous Cahn–Hilliard system." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 48.4 (2014): 1061-1087. <http://eudml.org/doc/273110>.

@article{Colli2014,
abstract = {In this paper we propose a time discretization of a system of two parabolic equations describing diffusion-driven atom rearrangement in crystalline matter. The equations express the balances of microforces and microenergy; the two phase fields are the order parameter and the chemical potential. The initial and boundary-value problem for the evolutionary system is known to be well posed. Convergence of the discrete scheme to the solution of the continuous problem is proved by a careful development of uniform estimates, by weak compactness and a suitable treatment of nonlinearities. Moreover, for the difference of discrete and continuous solutions we prove an error estimate of order one with respect to the time step.},
author = {Colli, Pierluigi, Gilardi, Gianni, Krejčí, Pavel, Podio-Guidugli, Paolo, Sprekels, Jürgen},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Cahn–Hilliard equation; phase field model; time discretization; convergence; error estimates},
language = {eng},
number = {4},
pages = {1061-1087},
publisher = {EDP-Sciences},
title = {Analysis of a time discretization scheme for a nonstandard viscous Cahn–Hilliard system},
url = {http://eudml.org/doc/273110},
volume = {48},
year = {2014},
}

TY - JOUR
AU - Colli, Pierluigi
AU - Gilardi, Gianni
AU - Krejčí, Pavel
AU - Podio-Guidugli, Paolo
AU - Sprekels, Jürgen
TI - Analysis of a time discretization scheme for a nonstandard viscous Cahn–Hilliard system
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2014
PB - EDP-Sciences
VL - 48
IS - 4
SP - 1061
EP - 1087
AB - In this paper we propose a time discretization of a system of two parabolic equations describing diffusion-driven atom rearrangement in crystalline matter. The equations express the balances of microforces and microenergy; the two phase fields are the order parameter and the chemical potential. The initial and boundary-value problem for the evolutionary system is known to be well posed. Convergence of the discrete scheme to the solution of the continuous problem is proved by a careful development of uniform estimates, by weak compactness and a suitable treatment of nonlinearities. Moreover, for the difference of discrete and continuous solutions we prove an error estimate of order one with respect to the time step.
LA - eng
KW - Cahn–Hilliard equation; phase field model; time discretization; convergence; error estimates
UR - http://eudml.org/doc/273110
ER -

References

top
  1. [1] F. Bai, C.M. Elliott, A. Gardiner, A. Spence and A.M. Stuart, The viscous Cahn-Hilliard equation. I. Computations. Nonlinearity8 (1995) 131–160. Zbl0818.35045MR1328591
  2. [2] J.W. Barrett and J.F. Blowey, An error bound for the finite element approximation of the Cahn-Hilliard equation with logarithmic free energy. Numer. Math.72 (1995) 1–20. Zbl0851.65070MR1359705
  3. [3] J.W. Barrett and J.F. Blowey, An improved error bound for a finite element approximation of a model for phase separation of a multi-component alloy with a concentration dependent mobility matrix. Numer. Math.88 (2001) 255–297. Zbl0990.65105MR1826854
  4. [4] J.W. Barrett, J.F. Blowey and H. Garcke, Finite element approximation of the Cahn-Hilliard equation with degenerate mobility. SIAM J. Numer. Anal.37 (1999) 286–318. Zbl0947.65109MR1742748
  5. [5] J.W. Barrett, J.F. Blowey and H. Garcke, On fully practical finite element approximations of degenerate Cahn-Hilliard systems. ESAIM: M2AN 35 (2001) 713–748. Zbl0987.35071MR1863277
  6. [6] S. Bartels and R. Müller, A posteriori error controlled local resolution of evolving interfaces for generalized Cahn-Hilliard equations. Interfaces Free Bound.12 (2010) 45–73. Zbl05690537MR2595377
  7. [7] S. Bartels and R. Müller, Error control for the approximation of Allen-Cahn and Cahn-Hilliard equations with a logarithmic potential. Numer. Math.119 (2011) 409–435. Zbl1241.65075MR2845623
  8. [8] J.F. Blowey and C.M. Elliott, The Cahn-Hilliard gradient theory for phase separation with nonsmooth free energy. II. Numerical analysis. Eur. J. Appl. Math. 3 (1992) 147–179. Zbl0810.35158MR1166255
  9. [9] E. Bonetti, Global solvability of a dissipative Frémond model for shape memory alloys. II. Existence. Quart. Appl. Math.62 (2004) 53–76. Zbl1073.35140MR2032572
  10. [10] H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Mathematics Studies, no. 5. Notas de Matemática. North-Holland Publishing Co., Amsterdam (1973). Zbl0252.47055MR348562
  11. [11] C. Carstensen and P. Plecháč, Numerical analysis of a relaxed variational model of hysteresis in two-phase solids. ESAIM: M2AN 35 (2001) 865–878. Zbl1007.74062MR1866271
  12. [12] Z. Chen, R.H. Nochetto and A. Schmidt, Error control and adaptivity for a phase relaxation model. ESAIM: M2AN 34 (2000) 775–797. Zbl0965.65114MR1784485
  13. [13] L. Cherfils, M. Petcu and M. Pierre, A numerical analysis of the Cahn-Hilliard equation with dynamic boundary conditions. Discrete Contin. Dyn. Syst.27 (2010) 1511–1533. Zbl1204.65113MR2629535
  14. [14] E. Chiodaroli, A dissipative model for hydrogen storage: existence and regularity results. Math. Methods Appl. Sci.34 (2011) 642–669. Zbl1217.35182MR2814720
  15. [15] P. Colli, M. Frémond and O. Klein, Global existence of a solution to a phase field model for supercooling. Nonlinear Anal. Real World Appl.2 (2001) 523–539. Zbl0998.80005MR1858904
  16. [16] P. Colli, G. Gilardi, P. Podio-Guidugli and J. Sprekels, Well-posedness and long-time behavior for a nonstandard viscous Cahn-Hilliard system. SIAM J. Appl. Math.71 (2011) 1849–1870. Zbl1331.74011MR2861103
  17. [17] P. Colli, G. Gilardi, P. Podio-Guidugli and J. Sprekels, Global existence and uniqueness for a singular/degenerate Cahn–Hilliard system with viscosity. J. Differ. Equ.254 (2013) 4217–4244. Zbl1325.35105MR3035431
  18. [18] C. Eck, B. Jadamba and P. Knabner, Error estimates for a finite element discretization of a phase field model for mixtures. SIAM J. Numer. Anal.47 (2010) 4429–4445. Zbl1215.65151MR2595043
  19. [19] S. Frigeri, P. Krejčí and U. Stefanelli, Quasistatic isothermal evolution of shape memory alloys. Math. Models Methods Appl. Sci.21 (2011) 2409–2432. Zbl1326.74108MR2864636
  20. [20] G. Gilardi and U. Stefanelli, Time-discretization and global solution for a doubly nonlinear Volterra equation. J. Differ. Equ.228 (2006) 707–736. Zbl1104.45005MR2289551
  21. [21] C. Gräser and R. Kornhuber, Multigrid methods for obstacle problems. J. Comput. Math.27 (2009) 1–44. Zbl1199.65401MR2493556
  22. [22] C. Gräser and R. Kornhuber, Nonsmooth Newton methods for set-valued saddle point problems. SIAM J. Numer. Anal.47 (2009) 1251–1273. Zbl1190.49035MR2485452
  23. [23] C. Gräser, R. Kornhuber and U. Sack, Nonsmooth Schur-Newton methods for vector-valued Cahn-Hilliard equations. Freie Universität Berlin, Fachbereich Mathematik und Informatik, Serie A Preprint no. 01 (2013) 1–16. Zbl1316.65086
  24. [24] J.W. Jerome, Approximation of nonlinear evolution systems, vol. 164 of Math. Sci. Eng. Academic Press Inc., Orlando, FL (1983). Zbl0512.35001MR690582
  25. [25] D. Kessler and J.-F. Scheid, A priori error estimates of a finite-element method for an isothermal phase-field model related to the solidification process of a binary alloy. IMA J. Numer. Anal.22 (2002) 281–305. Zbl1001.76057MR1897410
  26. [26] J. Kim, Phase-field models for multi-component fluid flows. Commun. Comput. Phys.12 (2012) 613–661. MR2903596
  27. [27] P. Krejčí and U. Stefanelli, Well-posedness of a thermo-mechanical model for shape memory alloys under tension. ESAIM: M2AN 44 (2010) 1239–1253. Zbl05835020MR2769056
  28. [28] A. Mielke, L. Paoli and A. Petrov, On existence and approximation for a 3D model of thermally induced phase transformations in shape-memory alloys. SIAM J. Math. Anal.41 (2009) 1388–1414. Zbl1201.49011MR2540271
  29. [29] P. Podio-Guidugli, Models of phase segregation and diffusion of atomic species on a lattice. Ric. Mat.55 (2006) 105–118. Zbl1150.74091MR2248166
  30. [30] M. Röger, Existence of weak solutions for the Mullins-Sekerka flow. SIAM J. Math. Anal.37 (2005) 291–301. Zbl1088.49031MR2176933
  31. [31] A. Segatti, Error estimates for a variable time-step discretization of a phase transition model with hyperbolic momentum. Numer. Funct. Anal. Optim.25 (2004) 547–569. Zbl1064.74084MR2106275
  32. [32] J. Simon, Compact sets in the space Lp(0,T;B). Ann. Mat. Pura Appl.146 (1987) 65–96. Zbl0629.46031MR916688
  33. [33] U. Stefanelli, Error control of a nonlinear evolution problem related to phase transitions. Numer. Funct. Anal. Optim.20 (1999) 585–608. Zbl0936.65112MR1704962
  34. [34] U. Stefanelli, Error control for a time-discretization of the full one-dimensional Frémond model for shape memory alloys. Adv. Math. Sci. Appl.10 (2000) 917–936. Zbl0980.65097MR1807457
  35. [35] U. Stefanelli, Analysis of a variable time-step discretization for a phase transition model with micro-movements. Commun. Pure Appl. Anal.5 (2006) 657–671. Zbl1141.35035MR2217596
  36. [36] C.L.D. Vaz, Rothe’s method for an isothermal phase-field model of a binary alloy with convection. Mat. Contemp.32 (2007) 221–251. Zbl1206.80018MR2428435

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.