Where does randomness lead in spacetime?

Ismael Bailleul; Albert Raugi

ESAIM: Probability and Statistics (2010)

  • Volume: 14, page 16-52
  • ISSN: 1292-8100

Abstract

top
We provide an alternative algebraic and geometric approach to the results of [I. Bailleul, Probab. Theory Related Fields141 (2008) 283–329] describing the asymptotic behaviour of the relativistic diffusion.

How to cite

top

Bailleul, Ismael, and Raugi, Albert. "Where does randomness lead in spacetime?." ESAIM: Probability and Statistics 14 (2010): 16-52. <http://eudml.org/doc/250841>.

@article{Bailleul2010,
abstract = { We provide an alternative algebraic and geometric approach to the results of [I. Bailleul, Probab. Theory Related Fields141 (2008) 283–329] describing the asymptotic behaviour of the relativistic diffusion. },
author = {Bailleul, Ismael, Raugi, Albert},
journal = {ESAIM: Probability and Statistics},
keywords = {Random walks on groups; Poisson boundary; special relativity; causal boundary.; relativistic diffusion; invariant sigma algebra; asymptotic behavior},
language = {eng},
month = {2},
pages = {16-52},
publisher = {EDP Sciences},
title = {Where does randomness lead in spacetime?},
url = {http://eudml.org/doc/250841},
volume = {14},
year = {2010},
}

TY - JOUR
AU - Bailleul, Ismael
AU - Raugi, Albert
TI - Where does randomness lead in spacetime?
JO - ESAIM: Probability and Statistics
DA - 2010/2//
PB - EDP Sciences
VL - 14
SP - 16
EP - 52
AB - We provide an alternative algebraic and geometric approach to the results of [I. Bailleul, Probab. Theory Related Fields141 (2008) 283–329] describing the asymptotic behaviour of the relativistic diffusion.
LA - eng
KW - Random walks on groups; Poisson boundary; special relativity; causal boundary.; relativistic diffusion; invariant sigma algebra; asymptotic behavior
UR - http://eudml.org/doc/250841
ER -

References

top
  1. A. Ancona, Théorie du potentiel sur les graphes et les variétés. École d'été de Probabilités de Saint-Flour XVIII, 1988. Lect. Notes Math.1427 (1990) 1–112. Springer, Berlin.  
  2. D. Applebaum, Compound Poisson processes and Lévy processes in groups and symmetric spaces. J. Theoret. Probab.13 (2000) 383–425.  
  3. D. Applebaum and H. Kunita, Lévy flows on manifolds and Lévy processes on Lie groups. J. Math. Kyoto Univ.33 (1993) 1103–1123.  
  4. I. Bailleul, Poisson boundary of a relativistic diffusion. Probab. Theory Related Fields141 (2008) 283–329.  
  5. P. Baldi and M. Chaleyat-Maurel, Sur l'équivalent du module de continuité des processus de diffusion, in Séminaire de Probabilités, XXI. Lect. Notes Math.1247 (1987) 404–427. Springer, Berlin.  
  6. J.K. Beem, P.E. Ehrlich and K.L. Easley, Global Lorentzian geometry, volume 202 of Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker Inc., New York, second edition (1996).  
  7. A.N. Borodin and P. Salminen, Handbook of Brownian motion – facts and formulae. Probability and its Applications. Birkhäuser Verlag, Basel. Second edition (2002).  
  8. Y. Derriennic, Lois “zéro ou deux” pour les processus de Markov. Applications aux marches aléatoires. Ann. Inst. H. Poincaré Sect. B (N.S.)12 (1976) 111–129.  
  9. R.M. Dudley, Lorentz-invariant Markov processes in relativistic phase space. Ark. Mat.6 (1966) 241–268.  
  10. R.M. Dudley, Asymptotics of some relativistic Markov processes. Proc. Natl. Acad. Sci. USA70 (1973) 3551–3555.  
  11. C. Frances, Géométrie et dynamique Lorentzienne conformes. École Normale Supérieure de Lyon (2002).  
  12. R. Geroch, E.H. Kronheimer, and Roger Penrose, Ideal points in space-time. Proc. Roy. Soc. Lond. Ser. A327 (1972) 545–567.  
  13. A. Grigor'yan, Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds. Bull. Amer. Math. Soc. (N.S.)36 (1999) 135–249.  
  14. Y. Guivarc'h. Une loi des grands nombres pour les groupes de Lie. In Séminaire de Probabilités, I . Exposé No. 8. Dépt. Math. Informat., Univ. Rennes, France (1976).  
  15. T.R. Hurd, The projective geometry of simple cosmological models. Proc. Roy. Soc. Lond. Ser. A397 (1985) 233–243.  
  16. N. Ikeda and S. Watanabe, Stochastic differential equations and diffusion processes. North-Holland Mathematical Library, Vol. 24. North-Holland Publishing Co., Amsterdam, second edition (1989).  
  17. F.I. Karpelevič, V.N. Tutubalin and M.G. Šur, Limit theorems for compositions of distributions in the Lobačevskiĭ plane and space. Teor. Veroyatnost. i Primenen.4 (1959) 432–436.  
  18. M. Liao, Lévy processes in Lie groups, volume 162 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (2004).  
  19. J. Neveu, Mathematical foundations of the calculus of probability. Translated by Amiel Feinstein. Holden-Day Inc., San Francisco, Californie (1965).  
  20. B. O'Neill, Semi-Riemannian geometry. With applications to relativity, volume 103 of Pure Appl. Math. Academic Press Inc. (Harcourt Brace Jovanovich Publishers), New York (1983).  
  21. R.G. Pinsky, Positive harmonic functions and diffusion, volume 45 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1995).  
  22. J.-J. Prat, Étude asymptotique et convergence angulaire du mouvement brownien sur une variété à courbure négative. C. R. Acad. Sci. Paris Sér. A-B280 Aiii (1975) A1539–A1542.  
  23. A. Raugi, Fonctions harmoniques sur les groupes localement compacts à base dénombrable. Bull. Soc. Math. France, Mémoire54 (1977) 5–118.  
  24. A. Raugi, Périodes des fonctions harmoniques bornées. In Seminar on Probability, Rennes, 1978 (French). Exposé No. 10. Univ. Rennes, France (1978).  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.