Explicit Solution of Bitsadze-Samarskii Problem Точно решение на задачата на Бицадзе-Самарски

Dimovski, Ivan; Tsankov, Yulian

Union of Bulgarian Mathematicians (2010)

  • Volume: 39, Issue: 1, page 114-122
  • ISSN: 1313-3330

Abstract

top
Иван Димовски, Юлиан Цанков - В статията е намерено точно решение на задачата на Бицадзе-Самрски (1) за уравнението на Лаплас, като е използвано операционно смятане основано на некласическа двумернa конволюция. На това точно решение може да се гледа като начин за сумиране на нехармоничния ред по синуси на решението, получен по метода на Фурие.In this paper we find an explicit solution of Bitsadze-Samarskii problem for Laplace equation using operational calculus approach, based on two non-classical one-dimensional convolutions and a two-dimensional convolution. In fact, the explicit solution obtained is a way for effective summation of a solution obtained in the form of non-harmonic Fourier sine-expansion. This explicit solution is suitable for numerical calculation too. *2000 Mathematics Subject Classification: 44A35, 35L20, 35J05, 35J25.1 Partially supported by Project ID 09 0129 ITMSFA with Nat. Sci. Fund. Ministry of Educ. Youth and Sci., Bulgaria. 2 Partially supported by Grand No 132 of NSF of Bulgaria.

How to cite

top

Dimovski, Ivan, and Tsankov, Yulian. "Explicit Solution of Bitsadze-Samarskii Problem Точно решение на задачата на Бицадзе-Самарски." Union of Bulgarian Mathematicians 39.1 (2010): 114-122. <http://eudml.org/doc/250956>.

@article{Dimovski2010,
abstract = {Иван Димовски, Юлиан Цанков - В статията е намерено точно решение на задачата на Бицадзе-Самрски (1) за уравнението на Лаплас, като е използвано операционно смятане основано на некласическа двумернa конволюция. На това точно решение може да се гледа като начин за сумиране на нехармоничния ред по синуси на решението, получен по метода на Фурие.In this paper we find an explicit solution of Bitsadze-Samarskii problem for Laplace equation using operational calculus approach, based on two non-classical one-dimensional convolutions and a two-dimensional convolution. In fact, the explicit solution obtained is a way for effective summation of a solution obtained in the form of non-harmonic Fourier sine-expansion. This explicit solution is suitable for numerical calculation too. *2000 Mathematics Subject Classification: 44A35, 35L20, 35J05, 35J25.1 Partially supported by Project ID 09 0129 ITMSFA with Nat. Sci. Fund. Ministry of Educ. Youth and Sci., Bulgaria. 2 Partially supported by Grand No 132 of NSF of Bulgaria.},
author = {Dimovski, Ivan, Tsankov, Yulian},
journal = {Union of Bulgarian Mathematicians},
keywords = {Nonlocal BVP; Right-Inverse Operator; Extended Duamel Principle; Generalized Solution; Non-Classical Convolution; Multiplier; Multiplier Fraction},
language = {eng},
number = {1},
pages = {114-122},
publisher = {Union of Bulgarian Mathematicians},
title = {Explicit Solution of Bitsadze-Samarskii Problem Точно решение на задачата на Бицадзе-Самарски},
url = {http://eudml.org/doc/250956},
volume = {39},
year = {2010},
}

TY - JOUR
AU - Dimovski, Ivan
AU - Tsankov, Yulian
TI - Explicit Solution of Bitsadze-Samarskii Problem Точно решение на задачата на Бицадзе-Самарски
JO - Union of Bulgarian Mathematicians
PY - 2010
PB - Union of Bulgarian Mathematicians
VL - 39
IS - 1
SP - 114
EP - 122
AB - Иван Димовски, Юлиан Цанков - В статията е намерено точно решение на задачата на Бицадзе-Самрски (1) за уравнението на Лаплас, като е използвано операционно смятане основано на некласическа двумернa конволюция. На това точно решение може да се гледа като начин за сумиране на нехармоничния ред по синуси на решението, получен по метода на Фурие.In this paper we find an explicit solution of Bitsadze-Samarskii problem for Laplace equation using operational calculus approach, based on two non-classical one-dimensional convolutions and a two-dimensional convolution. In fact, the explicit solution obtained is a way for effective summation of a solution obtained in the form of non-harmonic Fourier sine-expansion. This explicit solution is suitable for numerical calculation too. *2000 Mathematics Subject Classification: 44A35, 35L20, 35J05, 35J25.1 Partially supported by Project ID 09 0129 ITMSFA with Nat. Sci. Fund. Ministry of Educ. Youth and Sci., Bulgaria. 2 Partially supported by Grand No 132 of NSF of Bulgaria.
LA - eng
KW - Nonlocal BVP; Right-Inverse Operator; Extended Duamel Principle; Generalized Solution; Non-Classical Convolution; Multiplier; Multiplier Fraction
UR - http://eudml.org/doc/250956
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.