Generalized Fractional Calculus, Special Functions and Integral Transforms: What is the Relation? Обобщения на дробното смятане, специалните функции и интегралните трансформации: Каква е връзката?

Kiryakova, Virginia

Union of Bulgarian Mathematicians (2011)

  • Volume: 40, Issue: 1, page 42-53
  • ISSN: 1313-3330

Abstract

top
Виржиния С. Кирякова - В този обзор илюстрираме накратко наши приноси към обобщенията на дробното смятане (анализ) като теория на операторите за интегриране и диференциране от произволен (дробен) ред, на класическите специални функции и на интегралните трансформации от лапласов тип. Показано е, че тези три области на анализа са тясно свързани и взаимно индуцират своето възникване и по-нататъшно развитие. За конкретните твърдения, доказателства и примери, вж. Литературата.In this survey we briefly illustrate some of our contributions to the generalizations of the fractional calculus (analysis) as a theory of the operators for integration and differentiation of arbitrary (fractional) order, of the classical special functions and of the integral transforms of Laplace type. It is shown that these three topics of analysis are closely related and mutually induce their origins and developments. Due to the short space, we confine here only to survey the ideas of our recent contributions related to the title. Statements of the numerous results, their proofs, examples and applications can be found in Refs, like: [1]–[2], [5]–[7], [11]–[19]. *2010 Mathematics Subject Classification: 26A33, 33C60, 44A10, 44A40This paper is supported under Project D ID 02/25/2009: “Integral Transform Methods, Special Functions and Applications”, by the National Science Fund of the Ministry of Education, Youth and Science, Bulgaria.

How to cite

top

Kiryakova, Virginia. "Generalized Fractional Calculus, Special Functions and Integral Transforms: What is the Relation? Обобщения на дробното смятане, специалните функции и интегралните трансформации: Каква е връзката?." Union of Bulgarian Mathematicians 40.1 (2011): 42-53. <http://eudml.org/doc/250964>.

@article{Kiryakova2011,
abstract = {Виржиния С. Кирякова - В този обзор илюстрираме накратко наши приноси към обобщенията на дробното смятане (анализ) като теория на операторите за интегриране и диференциране от произволен (дробен) ред, на класическите специални функции и на интегралните трансформации от лапласов тип. Показано е, че тези три области на анализа са тясно свързани и взаимно индуцират своето възникване и по-нататъшно развитие. За конкретните твърдения, доказателства и примери, вж. Литературата.In this survey we briefly illustrate some of our contributions to the generalizations of the fractional calculus (analysis) as a theory of the operators for integration and differentiation of arbitrary (fractional) order, of the classical special functions and of the integral transforms of Laplace type. It is shown that these three topics of analysis are closely related and mutually induce their origins and developments. Due to the short space, we confine here only to survey the ideas of our recent contributions related to the title. Statements of the numerous results, their proofs, examples and applications can be found in Refs, like: [1]–[2], [5]–[7], [11]–[19]. *2010 Mathematics Subject Classification: 26A33, 33C60, 44A10, 44A40This paper is supported under Project D ID 02/25/2009: “Integral Transform Methods, Special Functions and Applications”, by the National Science Fund of the Ministry of Education, Youth and Science, Bulgaria.},
author = {Kiryakova, Virginia},
journal = {Union of Bulgarian Mathematicians},
keywords = {Fractional Integrals and Derivatives; Generalized Hypergeometric Functions; H-Functions; G-Functions; Integral Transforms of Laplace Type},
language = {eng},
number = {1},
pages = {42-53},
publisher = {Union of Bulgarian Mathematicians},
title = {Generalized Fractional Calculus, Special Functions and Integral Transforms: What is the Relation? Обобщения на дробното смятане, специалните функции и интегралните трансформации: Каква е връзката?},
url = {http://eudml.org/doc/250964},
volume = {40},
year = {2011},
}

TY - JOUR
AU - Kiryakova, Virginia
TI - Generalized Fractional Calculus, Special Functions and Integral Transforms: What is the Relation? Обобщения на дробното смятане, специалните функции и интегралните трансформации: Каква е връзката?
JO - Union of Bulgarian Mathematicians
PY - 2011
PB - Union of Bulgarian Mathematicians
VL - 40
IS - 1
SP - 42
EP - 53
AB - Виржиния С. Кирякова - В този обзор илюстрираме накратко наши приноси към обобщенията на дробното смятане (анализ) като теория на операторите за интегриране и диференциране от произволен (дробен) ред, на класическите специални функции и на интегралните трансформации от лапласов тип. Показано е, че тези три области на анализа са тясно свързани и взаимно индуцират своето възникване и по-нататъшно развитие. За конкретните твърдения, доказателства и примери, вж. Литературата.In this survey we briefly illustrate some of our contributions to the generalizations of the fractional calculus (analysis) as a theory of the operators for integration and differentiation of arbitrary (fractional) order, of the classical special functions and of the integral transforms of Laplace type. It is shown that these three topics of analysis are closely related and mutually induce their origins and developments. Due to the short space, we confine here only to survey the ideas of our recent contributions related to the title. Statements of the numerous results, their proofs, examples and applications can be found in Refs, like: [1]–[2], [5]–[7], [11]–[19]. *2010 Mathematics Subject Classification: 26A33, 33C60, 44A10, 44A40This paper is supported under Project D ID 02/25/2009: “Integral Transform Methods, Special Functions and Applications”, by the National Science Fund of the Ministry of Education, Youth and Science, Bulgaria.
LA - eng
KW - Fractional Integrals and Derivatives; Generalized Hypergeometric Functions; H-Functions; G-Functions; Integral Transforms of Laplace Type
UR - http://eudml.org/doc/250964
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.