Displaying similar documents to “Generalized Fractional Calculus, Special Functions and Integral Transforms: What is the Relation? Обобщения на дробното смятане, специалните функции и интегралните трансформации: Каква е връзката?”

On Fractional Helmholtz Equations

Samuel, M., Thomas, Anitha (2010)

Fractional Calculus and Applied Analysis

Similarity:

MSC 2010: 26A33, 33E12, 33C60, 35R11 In this paper we derive an analytic solution for the fractional Helmholtz equation in terms of the Mittag-Leffler function. The solutions to the fractional Poisson and the Laplace equations of the same kind are obtained, again represented by means of the Mittag-Leffler function. In all three cases the solutions are represented also in terms of Fox's H-function.

α-Mellin Transform and One of Its Applications

Nikolova, Yanka (2012)

Mathematica Balkanica New Series

Similarity:

MSC 2010: 35R11, 44A10, 44A20, 26A33, 33C45 We consider a generalization of the classical Mellin transformation, called α-Mellin transformation, with an arbitrary (fractional) parameter α > 0. Here we continue the presentation from the paper [5], where we have introduced the definition of the α-Mellin transform and some of its basic properties. Some examples of special cases are provided. Its operational properties as Theorem 1, Theorem 2 (Convolution theorem) and Theorem...

On fractional integration.

R.K. Saxena, S.L. Bora (1971)

Publications de l'Institut Mathématique [Elektronische Ressource]

Similarity:

A detailed analysis for the fundamental solution of fractional vibration equation

Li-Li Liu, Jun-Sheng Duan (2015)

Open Mathematics

Similarity:

In this paper, we investigate the solution of the fractional vibration equation, where the damping term is characterized by means of the Caputo fractional derivative with the order α satisfying 0 < α < 1 or 1 < α < 2. Detailed analysis for the fundamental solution y(t) is carried out through the Laplace transform and its complex inversion integral formula. We conclude that y(t) is ultimately positive, and ultimately decreases monotonically and approaches zero for the case...

Some fractional integral formulas for the Mittag-Leffler type function with four parameters

Praveen Agarwal, Juan J. Nieto (2015)

Open Mathematics

Similarity:

In this paper we present some results from the theory of fractional integration operators (of Marichev- Saigo-Maeda type) involving the Mittag-Leffler type function with four parameters ζ , γ, Eμ, ν[z] which has been recently introduced by Garg et al. Some interesting special cases are given to fractional integration operators involving some Special functions.

Theorems on some families of fractional differential equations and their applications

Gülçin Bozkurt, Durmuş Albayrak, Neşe Dernek (2019)

Applications of Mathematics

Similarity:

We use the Laplace transform method to solve certain families of fractional order differential equations. Fractional derivatives that appear in these equations are defined in the sense of Caputo fractional derivative or the Riemann-Liouville fractional derivative. We first state and prove our main results regarding the solutions of some families of fractional order differential equations, and then give examples to illustrate these results. In particular, we give the exact solutions for...

Fractional Calculus of P-transforms

Kumar, Dilip, Kilbas, Anatoly (2010)

Fractional Calculus and Applied Analysis

Similarity:

MSC 2010: 44A20, 33C60, 44A10, 26A33, 33C20, 85A99 The fractional calculus of the P-transform or pathway transform which is a generalization of many well known integral transforms is studied. The Mellin and Laplace transforms of a P-transform are obtained. The composition formulae for the various fractional operators such as Saigo operator, Kober operator and Riemann-Liouville fractional integral and differential operators with P-transform are proved. Application of the P-transform...

Fractional-order Bessel functions with various applications

Haniye Dehestani, Yadollah Ordokhani, Mohsen Razzaghi (2019)

Applications of Mathematics

Similarity:

We introduce fractional-order Bessel functions (FBFs) to obtain an approximate solution for various kinds of differential equations. Our main aim is to consider the new functions based on Bessel polynomials to the fractional calculus. To calculate derivatives and integrals, we use Caputo fractional derivatives and Riemann-Liouville fractional integral definitions. Then, operational matrices of fractional-order derivatives and integration for FBFs are derived. Also, we discuss an error...