On The Notions of Mating
Carsten Lunde Petersen[1]; Daniel Meyer[2]
- [1] Institut for Natur, Systemer og Modeller Bygn 27.2, Roskilde Universitet, Universitetsvej 1, DK-4000 Roskilde, Denmark
- [2] Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
Annales de la faculté des sciences de Toulouse Mathématiques (2012)
- Volume: 21, Issue: S5, page 839-876
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topPetersen, Carsten Lunde, and Meyer, Daniel. "On The Notions of Mating." Annales de la faculté des sciences de Toulouse Mathématiques 21.S5 (2012): 839-876. <http://eudml.org/doc/250988>.
@article{Petersen2012,
abstract = {The different notions of matings of pairs of equal degree polynomials are introduced and are related to each other as well as known results on matings. The possible obstructions to matings are identified and related. Moreover the relations between the polynomials and their matings are discussed and proved. Finally holomorphic motion properties of slow-mating are proved.},
affiliation = {Institut for Natur, Systemer og Modeller Bygn 27.2, Roskilde Universitet, Universitetsvej 1, DK-4000 Roskilde, Denmark; Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany},
author = {Petersen, Carsten Lunde, Meyer, Daniel},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
language = {eng},
month = {12},
number = {S5},
pages = {839-876},
publisher = {Université Paul Sabatier, Toulouse},
title = {On The Notions of Mating},
url = {http://eudml.org/doc/250988},
volume = {21},
year = {2012},
}
TY - JOUR
AU - Petersen, Carsten Lunde
AU - Meyer, Daniel
TI - On The Notions of Mating
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2012/12//
PB - Université Paul Sabatier, Toulouse
VL - 21
IS - S5
SP - 839
EP - 876
AB - The different notions of matings of pairs of equal degree polynomials are introduced and are related to each other as well as known results on matings. The possible obstructions to matings are identified and related. Moreover the relations between the polynomials and their matings are discussed and proved. Finally holomorphic motion properties of slow-mating are proved.
LA - eng
UR - http://eudml.org/doc/250988
ER -
References
top- Block (A.), Childers (D.), Levin (G.), Oversteegen (L.) and Schleicher (D.).— An Extended Fatou-Shishikura Inequality and Wandering Branch Continua for Polynomials. arXiv:10010953v2. Zbl06523793
- Branner (B.) and Hubbard (J. H.).— The iteration of cubic polynomials : Part I. The global topology of parameter space. Acta Math. 160, p. 143-206 (1988). Zbl0668.30008MR945011
- Carleson (L.) and Gamelin (T.).— Introduction to complex Dynamics. Springer (1993). Zbl0782.30022MR1230383
- Daverman (R. J.).— Decompositions of manifolds, volume 124 of Pure and Applied Mathematics. Academic Press Inc., Orlando, FL (1986). Zbl0608.57002MR872468
- Douady (A.).— Descriptions of compact sets in . in Topological Methods in Modern Mathematics, edited by L.R.Goldberg and A.V.Phillips, Publish or Perish, INC (1993). Zbl0801.58025MR1215973
- Kiwi (J.).— Real laminations and the topological dynamics of complex polynomials. Advances in Math. 184, no. 2, p. 207-267 (2004). Zbl1054.37025MR2054016
- Meyer (D.).— Invariant Peano curves of expanding Thurston maps. to appear in Acta Math. Zbl1333.37043
- Meyer (D.).— Expanding Thurston maps as quotients. Preprint.
- Meyer (D.).— Unmating of rational maps, sufficient criteria and examples. Preprint. Zbl06490013
- Milnor (J.).— Dynamics in one complex variable, Princeton Univ. Press, Princeton, NJ, (2006). Zbl1085.30002MR2193309
- Milnor (J.).— Geometry and Dynamics of Quadratic Rational Maps. Exp. Math. 2, p. 37-83 (1993). Zbl0922.58062MR1246482
- Milnor (J.).— Pasting together Julia sets: A worked out example of mating. Exp. Math. 13(1), p. 55-92 (2004). Zbl1115.37051MR2065568
- Moore (R. L.).— Concerning upper semi-continuous collections of continua, Trans. Amer. Math. Soc. Vol 27 No. 4, p. 416-428 (1925). Zbl51.0464.03MR1501320
- Petersen (C. L.) and Tan (L.).— Branner-Hubbard motions and attracting dynamics. in Dynamics on the Riemann Sphere, edited by P. G. Hjorth and C. L. Petersen, EMS Publishing House, p. 45-70 (2006). Zbl1149.37312MR2348954
- Rees (M.).— A partial description of parameter space of rational maps of degree two. I.Acta Math., 168(1-2), p. 11-87 (1992). Zbl0774.58035MR1149864
- Tan (L.).— Matings of quadratic polynomials.Ergodic Theory Dynam. Systems, 12(3), p. 589-620, (1992). Zbl0756.58024MR1182664
- Timorin (V.).— Moore’s theorem, preprint.
- Shishikuran (M.).— On a Theorem of M. Rees for matings of polynomials in The Mandelbrot Set, Theme and Variations, edited by Tan lei, Cambridge University Press, p. 289-305 (2000). Zbl1062.37039MR1765095
- Yampolsky (M.) and Zakeri (S.).— Mating Siegel quadratic polynomials, J. Amer. Math. Soc., 14(1), p. 25-78 (2001). Zbl1050.37022MR1800348
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.