On a theorem of Rees-Shishikura
Guizhen Cui[1]; Wenjuan Peng[1]; Lei Tan[2]
- [1] Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, P. R. China
- [2] Département de Mathématiques Université d’Angers, Angers, 49045 France
Annales de la faculté des sciences de Toulouse Mathématiques (2012)
- Volume: 21, Issue: S5, page 981-993
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topCui, Guizhen, Peng, Wenjuan, and Tan, Lei. "On a theorem of Rees-Shishikura." Annales de la faculté des sciences de Toulouse Mathématiques 21.S5 (2012): 981-993. <http://eudml.org/doc/251016>.
@article{Cui2012,
abstract = {Rees-Shishikura’s theorem plays an important role in the study of matings of polynomials. It promotes Thurston’s combinatorial equivalence into a semi-conjugacy. In this work we restate and reprove Rees-Shishikura’s theorem in a more general form, which can then be applied to a wider class of postcritically finite branched coverings. We provide an application of the restated theorem.},
affiliation = {Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, P. R. China; Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, P. R. China; Département de Mathématiques Université d’Angers, Angers, 49045 France},
author = {Cui, Guizhen, Peng, Wenjuan, Tan, Lei},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {Thurston equivalence; holomorphic dynamics; posctcritically finite branched coverings},
language = {eng},
month = {12},
number = {S5},
pages = {981-993},
publisher = {Université Paul Sabatier, Toulouse},
title = {On a theorem of Rees-Shishikura},
url = {http://eudml.org/doc/251016},
volume = {21},
year = {2012},
}
TY - JOUR
AU - Cui, Guizhen
AU - Peng, Wenjuan
AU - Tan, Lei
TI - On a theorem of Rees-Shishikura
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2012/12//
PB - Université Paul Sabatier, Toulouse
VL - 21
IS - S5
SP - 981
EP - 993
AB - Rees-Shishikura’s theorem plays an important role in the study of matings of polynomials. It promotes Thurston’s combinatorial equivalence into a semi-conjugacy. In this work we restate and reprove Rees-Shishikura’s theorem in a more general form, which can then be applied to a wider class of postcritically finite branched coverings. We provide an application of the restated theorem.
LA - eng
KW - Thurston equivalence; holomorphic dynamics; posctcritically finite branched coverings
UR - http://eudml.org/doc/251016
ER -
References
top- Beardon (A. F.).— Iteration of rational functions, Graduate text in Mathemathics, vol. 132, Springer-Verlag, New York (1993). Zbl0742.30002MR1128089
- Blokh (A.) and Levin (G.).— An inequality for laminations, Julia sets and ’growing trees’, Erg. Th. and Dyn. Sys., 22, p. 63-97 (2002). Zbl1067.37058MR1889565
- Cui (G.), Peng (W.) and Tan (L.).— Renormalization and wandering continua of rational maps, arXiv: math/1105.2935.
- Douady (A.).— Systèmes dynamiques holomorphes, (Bourbaki seminar, Vol. 1982/83) Astérisque, p. 105-106, p. 39-63 (1983). Zbl0532.30019MR728980
- Douady (A.) and Hubbard (J. H.).— Étude dynamique des polynômes complexes, I, II, Publ. Math. Orsay (1984-1985). Zbl0552.30018
- Kiwi (J.).— Rational rays and critical portraits of complex polynomials, Preprint 1997/15, SUNY at Stony Brook and IMS. MR2697078
- Levin (G.).— On backward stability of holomorphic dynamical systems, Fund. Math., 158, p. 97-107 (1998). Zbl0915.58089MR1656942
- Petersen (C. L.) and Meyer (D.).— On the notions of mating, to appear in Annales de la Faculté des Sciences de Toulouse. Zbl06167094
- Pilgrim (K.) and Tan (L.).— Rational maps with disconnected Julia set, Astérisque 261, volume spécial en l’honneur d’A. Douady, p. 349-384 (2000). Zbl0941.30014MR1755447
- Rees (M.).— A partial description of parameter space of rational maps of degree two: Part I, Acta Math., 168, p. 11-87 (1992). Zbl0774.58035MR1149864
- Shishikura (M.).— On a theorem of M. Rees for matings of polynomials, in The Mandelbrot set, Theme and Variations, ed. Tan Lei, LMS Lecture Note Series 274, Cambridge Univ. Press, p. 289-305 (2000). Zbl1062.37039MR1765095
- Tan (L.).— Matings of quadratic polynomials, Erg. Th. and Dyn. Sys., 12, p. 589-620 (1992). Zbl0756.58024MR1182664
- Thurston (W.).— The combinatorics of iterated rational maps (1985), published in: ”Complex dynamics: Families and Friends”, ed. by D. Schleicher, A K Peters, p. 1-108 (2008). MR2508255
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.