Argumentwise invariant kernels for the approximation of invariant functions

David Ginsbourger[1]; Xavier Bay[2]; Olivier Roustant[2]; Laurent Carraro[3]

  • [1] University of Bern, Institute of Mathematical Statistics and Actuarial Science, Alpeneggstrasse 22, CH-3012 Bern, Switzerland
  • [2] École Nationale Supérieure des Mines, Fayol-EMSE, LSTI, 158 cours Fauriel, F-42023 Saint-Etienne, France
  • [3] Télécom Saint-Etienne, 25 rue du Docteur Rémy Annino, F-42000 Saint-Etienne, France

Annales de la faculté des sciences de Toulouse Mathématiques (2012)

  • Volume: 21, Issue: 3, page 501-527
  • ISSN: 0240-2963

Abstract

top
We consider the problem of designing adapted kernels for approximating functions invariant under a known finite group action. We introduce the class of argumentwise invariant kernels, and show that they characterize centered square-integrable random fields with invariant paths, as well as Reproducing Kernel Hilbert Spaces of invariant functions. Two subclasses of argumentwise kernels are considered, involving a fundamental domain or a double sum over orbits. We then derive invariance properties for Kriging and conditional simulation based on argumentwise invariant kernels. The applicability and advantages of argumentwise invariant kernels are demonstrated on several examples, including a symmetric function from the reliability literature.

How to cite

top

Ginsbourger, David, et al. "Argumentwise invariant kernels for the approximation of invariant functions." Annales de la faculté des sciences de Toulouse Mathématiques 21.3 (2012): 501-527. <http://eudml.org/doc/250993>.

@article{Ginsbourger2012,
abstract = {We consider the problem of designing adapted kernels for approximating functions invariant under a known finite group action. We introduce the class of argumentwise invariant kernels, and show that they characterize centered square-integrable random fields with invariant paths, as well as Reproducing Kernel Hilbert Spaces of invariant functions. Two subclasses of argumentwise kernels are considered, involving a fundamental domain or a double sum over orbits. We then derive invariance properties for Kriging and conditional simulation based on argumentwise invariant kernels. The applicability and advantages of argumentwise invariant kernels are demonstrated on several examples, including a symmetric function from the reliability literature.},
affiliation = {University of Bern, Institute of Mathematical Statistics and Actuarial Science, Alpeneggstrasse 22, CH-3012 Bern, Switzerland; École Nationale Supérieure des Mines, Fayol-EMSE, LSTI, 158 cours Fauriel, F-42023 Saint-Etienne, France; École Nationale Supérieure des Mines, Fayol-EMSE, LSTI, 158 cours Fauriel, F-42023 Saint-Etienne, France; Télécom Saint-Etienne, 25 rue du Docteur Rémy Annino, F-42000 Saint-Etienne, France},
author = {Ginsbourger, David, Bay, Xavier, Roustant, Olivier, Carraro, Laurent},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {reproducing kernel Hilbert spaces; invariant random fields},
language = {eng},
month = {4},
number = {3},
pages = {501-527},
publisher = {Université Paul Sabatier, Toulouse},
title = {Argumentwise invariant kernels for the approximation of invariant functions},
url = {http://eudml.org/doc/250993},
volume = {21},
year = {2012},
}

TY - JOUR
AU - Ginsbourger, David
AU - Bay, Xavier
AU - Roustant, Olivier
AU - Carraro, Laurent
TI - Argumentwise invariant kernels for the approximation of invariant functions
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2012/4//
PB - Université Paul Sabatier, Toulouse
VL - 21
IS - 3
SP - 501
EP - 527
AB - We consider the problem of designing adapted kernels for approximating functions invariant under a known finite group action. We introduce the class of argumentwise invariant kernels, and show that they characterize centered square-integrable random fields with invariant paths, as well as Reproducing Kernel Hilbert Spaces of invariant functions. Two subclasses of argumentwise kernels are considered, involving a fundamental domain or a double sum over orbits. We then derive invariance properties for Kriging and conditional simulation based on argumentwise invariant kernels. The applicability and advantages of argumentwise invariant kernels are demonstrated on several examples, including a symmetric function from the reliability literature.
LA - eng
KW - reproducing kernel Hilbert spaces; invariant random fields
UR - http://eudml.org/doc/250993
ER -

References

top
  1. Abrahamsen (P.).— A review of Gaussian random fields and correlation functions, second edition. Technical report, Norwegian Computing Center (1997). 
  2. Adler (R.J.) and Taylor (J.E.).— Random Fields and Geometry. Springer, Boston (2007). Zbl1149.60003MR2319516
  3. Amari (S.) and Nagaoka (H.).— Transactions of mathematical monographs: methods of information geometry, volume 191. Oxford University Press (2000). Zbl0960.62005MR1800071
  4. Anderes (E.B.).— Estimating deformations of isotropic Gaussian random fields. PhD thesis, Univ. Chicago (2005). MR2717272
  5. Anderes (E.B.) and Chatterjee (S.).— Consistent estimates of deformed isotropic Gaussian random fields on the plane. The Annals of Statistics, 37, No. 5A, p. 2324-2350 (2009). Zbl1171.62056MR2543694
  6. Anderes (E.B.) and Stein (M.L.).— Estimating deformations of isotropic Gaussian random fields on the plane. The Annals of Statistics, Vol. 36, No. 2, p. 719-741 (2008). Zbl1133.62077MR2396813
  7. Bect (J.), Ginsbourger (D.), Li (L.), Picheny (V.) and Vazquez (E.).— Sequential design of computer experiments for the estimation of a probability of failure. Statistics and Computing, Vol. 22, 3, p. 773-793 (2012). Zbl1252.62081
  8. Bekka (B.), de la Harpe (P.) and Valette (A.).— Kazhdan’s property (T). Cambridge University Press (2008). Zbl1146.22009MR2415834
  9. Berg (C.), Christensen (J.P.R.) and Ressel (P.).— Harmonic Analysis on Semigroups. Springer (1984). Zbl0619.43001MR747302
  10. Berlinet (A.) and Thomas Agnan (C.).— Reproducing Kernel Hilbert Spaces in Probability and Statistics. Kluwer Academic Publishers (2003). Zbl1145.62002MR2239907
  11. Cartan (H.) and Godement (R.).— Théorie de la dualité et analyse harmonique dans les groupes abéliens localement compacts. Annales Scientifiques de l’Ecole Normale Supérieure, 64, p. 79-99 (1947). Zbl0033.18801MR23241
  12. Cramér (H.) and Leadbetter (M.R.).— Stationary and Related Stochastic Processes: Sample Function Properties and Their Applications. Dover (1967). Zbl0162.21102MR2108670
  13. Cressie (N.A.C.).— Statistics for spatial data. Wiley series in probability and mathematical statistics (1993). Zbl0799.62002MR1239641
  14. Curriero (F.C.).— On the use of non-euclidean isotropy in geostatistics. Technical report, Johns Hopkins University, 2005. Zbl1162.86320
  15. Eaton (M.L.).— Group invariance applications in statistics. Regional Conference Series in Probability and Statistics Volume 1, (1989). Zbl0749.62005MR1089423
  16. Echard (B.), Gayton (N.) and Lemaire (M.).— Kriging-based monte carlo simulation to compute the probability of failure efficiently: AK-MCS method. In 6èmes Journées Nationales de Fiabilité, 24-26 mars, Toulouse, France (2010). 
  17. Gaetan (C.) and Guyon (X.).— Modélisation et Statistique Spatiales. Springer (2008). Zbl1270.62091MR2723321
  18. Genton (M.G.).— Classes of kernels for machine learning: A statistics perspective. Journal of Machine Learning Research, 2, p. 299-312 (2001). Zbl1037.68113MR1904760
  19. Gramacy (R.B.) and Lee (H.K.H.).— Bayesian treed Gaussian process models with an application to computer modeling. Journal of the American Statistical Association, 103, p. 1119-1130 (2008). Zbl1205.62218MR2528830
  20. Guttorp (P.) and Sampson (P.D.).— Nonparametric estimation of nonstationary spatial covariance structure. Journal of the American Statistical Association, 87, No. 417, p. 108-119 (1992). 
  21. Hastie (T.), Tibshirani (R.) and Friedman (J.).— The Elements of Statistical Learning. Springer (2001). Zbl0973.62007MR1851606
  22. Hristopoulos (D.T.).— Spatial random field models inspired from statistical physics with applications in the geosciences. Physica A, (365), p. 211-216, June (2006). 
  23. Istas (J.).— Manifold indexed fractional fields. ESAIM P&S (2011). 
  24. Jones (D.R.), Schonlau (M.) and Welch (W.J.).— Efficient global optimization of expensive black-box functions. Journal of Global Optimization, 13, p. 455-492 (1998). Zbl0917.90270MR1673460
  25. Krige (D.G.).— A statistical approach to some basic mine valuation problems on the witwatersrand. J. of the Chem., Metal. and Mining Soc. of South Africa, 52 (6), p. 119-139 (1951). 
  26. Lang (S.).— Algebra. Addison-Wesley, Reading, Mass. (1965). Zbl0848.13001MR197234
  27. Lee (H.), Higdon (D.), Calder (K.) and Holloman (C.).— Spatial models via convolutions of intrinsic processes. Statistical Modelling, 5, p. 1-21 (2005). 
  28. Lévy (P.).— Processus stochastiques et mouvement Brownien (1965). Zbl0248.60004
  29. Matheron (G.).— La théorie des variables régionalisées et ses applications. Technical report, Centre de Morphologie Mathématique de Fontainebleau, École Nationale Supérieure des Mines de Paris (1970). 
  30. O’Hagan (A.).— Bayesian analysis of computer code outputs: a tutorial. Reliability Engineering and System Safety, 91(91), p. 1290-1300 (2006). 
  31. Paciorek (C.J.) and Schervish (M.J.).— Nonstationary covariance functions for Gaussian process regression. In Advances in Neural Information Processing Systems 16 (NIPS) (2004). 
  32. Paciorek (C.J.).— Nonstationary Gaussian Processes for Regression and Spatial Modelling. PhD thesis, Carnegie Mellon University (2003). MR2704401
  33. Parthasarathy (K.R.) and Schmidt (K.).— Positive Definite Kernels, Continuous Tensor Products, and Central Limit Theorems of Probability Theory. Lecture Notes in Mathematics, Springer (1972). Zbl0237.43005MR622034
  34. Rasmussen (C.E.) and Williams (K.I.).— Gaussian Processes for Machine Learning. M.I.T. Press (2006). Zbl1177.68165MR2514435
  35. Revuz (D.) and Yor (M.).— Continuous Martingales and Brownian Motion. Springer-Verlag (1991). Zbl0804.60001MR1083357
  36. Santner (T.J.), Williams (B.J.) and Notz (W.J.).— The Design and Analysis of Computer Experiments. Springer (2003). Zbl1041.62068MR2160708
  37. Schmidt (A.M.) and O’Hagan (A.).— Bayesian inference for non-stationary spatial covariance structure via spatial deformations. Journal of the Royal Statistical Society B, 65(3), p. 745-758 (2003). Zbl1063.62034MR1998632
  38. Schoenberg (I.J.).— Metric spaces and positive definite functions. Transactions of the American Mathematical Society, 44(3), p. 522-536 (1938). Zbl0019.41502MR1501980
  39. Schölkopf (B.).— The kernel trick for distances. In Neural Information Processing Systems (2000). 
  40. Schueremans (L.) and Van Gemert (D.).— Benefit of splines and neural networks in simulation based structural reliability analysis. Structural safety, 27(3), p. 246-261 (2005). 
  41. Stein (M.L.).— Interpolation of Spatial Data, Some Theory for Kriging. Springer (1999). Zbl0924.62100MR1697409
  42. Vapnik (V.N.).— Statistical Learning Theory. Wiley-Interscience (1998). Zbl0935.62007MR1641250
  43. Vazquez (E.).— Modélisation Comportementale de Systèmes Non-linéaires Multivariables par Méthodes à Noyaux et Applications. PhD thesis, Université Paris XI Orsay (2005). 
  44. Vert (J.-P.).— Kernel Methods. Centre for Computational Biology, Ecole des Mines de Paris (2007). 
  45. Waarts (P.H.).— Structural reliability using finite element methods: an appraisal of DARS. PhD thesis, Delft University of Technology (2000). 
  46. Wahba (G.).— Spline Models for Observational Data. Siam (1990). Zbl0813.62001MR1045442
  47. Xiong (Y.), Chen (W.), Apley (D.), and Ding (X.).— A non-stationary covariance-based kriging method for metamodelling in engineering design. International Journal of Numerical Methods in Engineering, 71, p. 733-756 (2007). Zbl1194.74553

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.