Manifold indexed fractional fields∗
ESAIM: Probability and Statistics (2012)
- Volume: 16, page 222-276
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topIstas, Jacques. "Manifold indexed fractional fields∗." ESAIM: Probability and Statistics 16 (2012): 222-276. <http://eudml.org/doc/222450>.
@article{Istas2012,
abstract = {(Local) self-similarity is a seminal concept, especially for Euclidean random fields. We
study in this paper the extension of these notions to manifold indexed fields. We give
conditions on the (local) self-similarity index that ensure the existence of fractional
fields. Moreover, we explain how to identify the self-similar index. We describe a way of
simulating Gaussian fractional fields. },
author = {Istas, Jacques},
journal = {ESAIM: Probability and Statistics},
keywords = {Self-similarity; stochastic fields; manifold; self-similarity; Gaussian field; stable field; Euclidean random field},
language = {eng},
month = {7},
pages = {222-276},
publisher = {EDP Sciences},
title = {Manifold indexed fractional fields∗},
url = {http://eudml.org/doc/222450},
volume = {16},
year = {2012},
}
TY - JOUR
AU - Istas, Jacques
TI - Manifold indexed fractional fields∗
JO - ESAIM: Probability and Statistics
DA - 2012/7//
PB - EDP Sciences
VL - 16
SP - 222
EP - 276
AB - (Local) self-similarity is a seminal concept, especially for Euclidean random fields. We
study in this paper the extension of these notions to manifold indexed fields. We give
conditions on the (local) self-similarity index that ensure the existence of fractional
fields. Moreover, we explain how to identify the self-similar index. We describe a way of
simulating Gaussian fractional fields.
LA - eng
KW - Self-similarity; stochastic fields; manifold; self-similarity; Gaussian field; stable field; Euclidean random field
UR - http://eudml.org/doc/222450
ER -
References
top- P. Abry, P. Gonçalvès and P. Flandrin, Wavelets, spectrum analysis and 1 /f processes. Lect. Note Stat.103 (1995) 15–29.
- A. Ayache and J. Lévy-Vehel, The Multifractional Brownian motion. Stat. Inference Stoch. Process.1 (2000) 7–18.
- A. Ayache and J. Lévy-Vehel, On the identification of the pointwise Hölder exponent of the generalized multifractional Brownian motion. Stoc. Proc. Appl.111 (2004) 119–156.
- A. Ayache, P. Bertrand and J. Lévy-Vehel, A central limit theorem for the generalized quadratic variation of the step fractional Brownian. Stat. Inference Stoch. Process.10 (2007) 1–27.
- J.-M. Bardet, Testing for the presence of self-similarity of Gaussian time series having stationary increments. J. Time Ser. Anal.25 (2000) 497–515.
- J.-M. Bardet and P. Bertrand, Identification of the multiscale fractional Brownian motion with biomechanical applications. J. Time Ser. Anal.28 (2007) 1–52.
- B. Bekka, P. de la Harpe and A. Valette, Kazhdan’s Property (T). Cambridge University Press (2008).
- A. Benassi, S. Jaffard and D. Roux, Gaussian processes and Pseudodifferential Elliptic operators. Revista Mathematica Iberoam.13 (1997) 19–90.
- A. Benassi, S. Cohen and J. Istas, Identifying the multifractional function of a Gaussian process. Stat. Probab. Lett.39 (1998) 337–345.
- A. Benassi, S. Cohen, J. Istas and S. Jaffard, Identification of filtered white noises. Stoc. Proc. Appl.75 (1998) 31–49.
- A. Benassi, P. Bertrand, S. Cohen and J. Istas, Identification of the Hurst index of a step fractional Brownian motion. Stat. Inference Stoch. Process3 (2000) 101–111.
- A. Benassi, S. Cohen and J. Istas, Identification and properties of real harmonizable fractional Lévy motions. Bernoulli8 (2002) 97–115.
- A. Benassi, S. Cohen and J. Istas, On roughness indices for fractional fields. Bernoulli10 (2004) 357–373.
- A. Begyn, Quadratic variations along irregular subdivisions for Gaussian processes. Electron. J. Probab.10 (2005) 691–717.
- A. Begyn, Asymptotic expansion and central limit theorem for quadratic variations of Gaussian processes. Bernoulli13 (2007) 712–753.
- A. Begyn, Functional limit theorems for generalized quadratic variations of Gaussian processes. Stoc. Proc. Appl.117 (2007) 1848–1869.
- C. Berzin and J. Leon, Estimating the Hurst parameter. Stat. Inference Stock. Process.10 (2007) 49–73.
- A. Bonami and A. Estrade, Anisotropic analysis of Gaussian models. J. Fourier Anal. Appl.9 (2004) 215–236.
- V. Borrelli, F. Cazals and J.-M. Morvan, On the angular defect of triangulations and the pointwise approximation of curvatures, curves and surfaces’02. Comput. Aid. Geom. Des.20319–341.
- J. Bretagnolle, D. Dacunha-Castelle and J.-L. Krivine, Lois stables et espaces Lp. Ann. Inst. Henri Poincaré2 (1969) 231–259.
- A. Brouste, J. Istas and S. Lambert-Lacroix, On fractional Gaussian random fields simulation. J. Stat. Soft.1 (2007) 1–23.
- A. Brouste, J. Istas and S. Lambert-Lacroix, On simulation of fractional Brownian motion indexed by a manifold. J. Stat. Soft.36 (2010).
- N. Chentsov, Lévy’s Brownian motion of several parameters and generalized white noise. Theory Probab. Appl.2 (1957) 265–266.
- J.-F. Coeurjolly, Simulation and identification of the fractional Brownian motion : a bibliographical and comparative study. J. Stat. Software5 (2000) 1–53.
- J.-F. Coeurjolly, Estimating the parameters of a fractional Brownian Motion by discrete variations of its sample paths. Stat. Inference Stoch. Process.4 (2001) 199–227.
- J.-F. Coeurjolly, Identification of multifractional Brownian motion. Bernoulli11 (2005) 987–1008.
- J.-F. Coeurjolly, Hurst exponent estimation of locally self-similar Gaussian processes using sample quantiles. Ann. Statist.36 (2008) 1404–1434.
- J.-F. Coeurjolly and J. Istas, Cramer-Rao bounds for fractional Brownian motions. Stat. Probab. Lett.53 (2001) 435–447.
- S. Cohen, From self-similarity to local self-similarity : the estimation problem. Fractal in Engineering, edited by J. Lévy-Vehel and C. Tricot. Springer Verlag, Delft (1999).
- S. Cohen and J. Istas, An universal estimator of local self-similarity. Preprint (2006).
- S. Cohen and J. Istas, Fractional fields : Modelling and statistical applications (Submitted).
- S. Cohen and M. Lifshits, Stationary Gaussian random fields on hyperbolic spaces and Euclidean spheres. To appear in ESAIM : PS.
- S. Cohen, X. Guyon, O. Perrin and M. Pontier, Singularity functions for fractional processes : application to the fractional brownian sheet. Ann. Inst. Henri Poincaré42 (2006) 187–205.
- D. Dacunha-Castelle and M. Duflo, Probabilités et Statistiques tome 2. Masson, Paris (1983).
- R. Dalhaus, Efficient parameter estimation for self-similar processes. Ann. Statist.17 (1989) 1749–1766.
- I. Daubechies, Orthonormal bases of compactly supported wavelets. Commun. Pure Appl. Math.41 (1988) 909–996.
- S. Dégerine and S. Lambert-Lacroix, Partial autocorrelation function of a nonstationary time series. J. Multiv. Anal. (2003) 46–59.
- R.L. Dobrushin, Automodel generalized random fields and their renorm group, in Multicomponent Random Systems, edited by R.L. Dobrushin and Ya. G. Sinai. Dekker, New York (1980) 153–198.
- A. Dress, V. Moulton and W. Terhalle, T-theory : An overview, Eur. J. Comb.17 (1996) 161–175.
- A. Erdélyi, W. Magnus, F. Oberhettinger and F. Tricomi, Higher transcendental functions (Bateman manuscript project). McGraw-Hill 2 (1953)
- K. Falconer, Tangent fields and the local structure of random fields. J. Theor. Probab.15 (2002) 731–750.
- K. Falconer, The local structure of random processes. J. Lond. Math. Soc. 67 (2003) 657–672.
- J. Faraut, Fonction brownienne sur une variété riemannienne. Séminaire de probabilités de Strasbourg7 (1973) 61–76.
- J. Faraut and H. Harzallah, Distances hilbertiennes invariantes sur un espace homogène. Ann. Inst. Fourier24 (1974) 171–217.
- S. Gallot, D. Hulin and J. Lafontaine, Riemannian Geometry, 2nd edition. Springer-Verlag (1993).
- R. Gangolli, Positive definite kernels on homogeneous spaces and certain stochastic processes related to Lévy’s Brownian motion of several parameters. Ann. Inst. Henri Poincaré3 (1967) 121–226.
- X. Guyon and J. Leon, Convergence en loi des H-variations d’un processus gaussien stationnaire. Ann. Inst. Henri Poincaré25 (1989) 265–282.
- S. Helgason, Differential Geometry and Symmetric spaces. Academic Press (1962).
- E. Herbin and E. Merzbach, A set-indexed fractional Brownian motion. J. Theor. Probab.19 (2006) 337–364.
- E. Herbin and E. Merzbach, Stationarity and self-similarity characterization of the set-indexed fractional Brownian motion. J. Theor. Probab.22 (2009) 1010–1029.
- J. Istas, Spherical and hyperbolic fractional Brownian motion. Electron. Comm. Probab.10 (2005) 254–262.
- J. Istas, On fractional stable fields indexed by metric spaces. Electron. Comm. Probab. 11 (2006) 242–251.
- J. Istas, Karhunen-Loève expansion of spherical fractional Brownian motions. Stat. Probab. Lett.76 (2006) 1578–1583.
- J. Istas, Quadratic variations of spherical fractional Brownian motions, Stoc. Proc. Appl.117 (2007) 476–486.
- J. Istas, Identifying the anisotropical function of a d-dimensional Gaussian self-similar process with stationary increments. Stat. Inf. Stoc. Proc.10-1 (2007) 97–106.
- J. Istas and C. Lacaux, On locally self-similar fractional random fields indexed by a manifold. preprint.
- J. Istas and G. Lang, Variations quadratiques et estimation de l’exposant de Hölder local d’un processus gaussien. C. R. Acad. Sci. Sér. I Paris319 (1994) 201–206.
- J. Istas and G. Lang, Quadratic variations and estimation of the Hölder index of a Gaussian process. Ann. Inst. Henri Poincaré33 (1997) 407–436.
- J. Kent and A. Wood, Estimating the fractal dimension of a locally self-similar Gaussian process using increments. J. Roy. Statist. Soc. B59 (1997) 679–700.
- A. Koldobsky, Schoenberg’s problem on positive definite functions. Algebra Anal.3 (1991) 78–85.
- A. Koldobsky and Y. Lonke, A short proof of Schoenberg’s conjecture on positive definite functions. Bull. Lond. Math. Soc. (1999) 693–699.
- A. Kolmogorov, Wienersche Spiralen und einige andere interessante Kurven im Hilbertsche Raum (German). C. R. (Dokl.) Acad. Sci. URSS26 (1940) 115–118.
- C. Lacaux, Real harmonizable multifractional Lévy motions. Ann. Inst. Henri Poincaré40 (2004) 259–277.
- G. Lang and F. Roueff, Semi-parametric estimation of the Hölder exponent of a stationary Gaussian process with minimax rates. Stat. Inf. Stoc. Proc.4-3 (2001) 283–306.
- P. Lévy, Processus stochastiques et mouvement Brownien. Gauthier-Vilars (1965).
- T. Lindstrom, Fractional Brownian fields as integrals of white noise. Bull. Lond. Math. Soc.25 (1993) 83–88.
- M. Maejima, A remark on self-similar processes with stationary increments. Can. J. Stat.14 (1986) 81–82.
- B.B. Mandelbrot and J.W. Van Ness, Fractional Brownian motions, fractional noises and applications, SIAM Rev.10 (1968) 422–437.
- R. Peltier and J. Lévy-Vehel, Multifractional Brownian motion : definition and preliminary results. Rapport de recherche de l’INRIA 2645 (1996).
- P. Petersen, Riemannian Geometry. Graduate Texts in Mathematics, Springer (1998).
- E. Rafajlowicz, Testing (non-)existence of input-output relationships by estimating fractal dimensions. IEEE Trans. Signal Process.52 (2004) 3151–3159.
- G. Robertson, Crofton formulae and geodesic distance in hyperbolic spaces. J. Lie Theory8 (1998) 163–172.
- G. Robertson and T. Steger, Negative definite kernels and a dynamical characterization of property T for countable groups. Ergod. Theory Dyn. Syst.18 (1998) 247–253.
- W. Rudin, Fourier analysis on groups. Wiley (1962).
- G. Samorodnitsky, Long memory and self-similar processes. Annales de la Faculté des Sciences Toulouse15 (2006) 107–123.
- G. Samorodnitsky and M. Taqqu, Stable non-Gaussian random processes : stochastic models with infinite variance. Chapman & Hall, New York (1994).
- I. Schönberg, Metric spaces and positive definite functions. Ann. Math.39 (1938) 811–841.
- R. Seeley, Spherical harmonics. Am. Math. Mon.73 (1966) 115–121.
- S. Stoev and M. Taqqu, Stochastic properties of the linear multifractional stable motion. Adv. Appl. Prob.36 (2004) 1085–1115.
- G. Szego, Orthogonal Polynomials, 4th edition, in Amer. Math. Soc. Providence, RI (1975).
- S. Takenaka, Integral-geometric construction of self-similar stable processes. Nagoya Math. J.123 (1991) 1–12.
- S. Takenaka, I. Kubo and H. Urakawa, Brownian motion parametrized with metric space of constant curvature. Nagoya Math. J.82 (1981) 131–140.
- A. Valette, Les représentations uniformément bornées associées à un arbre réel. Bull. Soc. Math. Belgique42 (1990) 747–760.
- H. Wang, Two-point homogeneous spaces. Ann. Math.2 (1952) 177–191.
- A. Yaglom, Some classes of random fields in n-dimensional space, related to stationary random processes. Theory Probab. Appl.2 (1957) 273–320.
- A. Zaanen, Linear Anal. North Holland Publishing Co (1960).
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.