Manifold indexed fractional fields∗

Jacques Istas

ESAIM: Probability and Statistics (2012)

  • Volume: 16, page 222-276
  • ISSN: 1292-8100

Abstract

top
(Local) self-similarity is a seminal concept, especially for Euclidean random fields. We study in this paper the extension of these notions to manifold indexed fields. We give conditions on the (local) self-similarity index that ensure the existence of fractional fields. Moreover, we explain how to identify the self-similar index. We describe a way of simulating Gaussian fractional fields.

How to cite

top

Istas, Jacques. "Manifold indexed fractional fields∗." ESAIM: Probability and Statistics 16 (2012): 222-276. <http://eudml.org/doc/222450>.

@article{Istas2012,
abstract = {(Local) self-similarity is a seminal concept, especially for Euclidean random fields. We study in this paper the extension of these notions to manifold indexed fields. We give conditions on the (local) self-similarity index that ensure the existence of fractional fields. Moreover, we explain how to identify the self-similar index. We describe a way of simulating Gaussian fractional fields. },
author = {Istas, Jacques},
journal = {ESAIM: Probability and Statistics},
keywords = {Self-similarity; stochastic fields; manifold; self-similarity; Gaussian field; stable field; Euclidean random field},
language = {eng},
month = {7},
pages = {222-276},
publisher = {EDP Sciences},
title = {Manifold indexed fractional fields∗},
url = {http://eudml.org/doc/222450},
volume = {16},
year = {2012},
}

TY - JOUR
AU - Istas, Jacques
TI - Manifold indexed fractional fields∗
JO - ESAIM: Probability and Statistics
DA - 2012/7//
PB - EDP Sciences
VL - 16
SP - 222
EP - 276
AB - (Local) self-similarity is a seminal concept, especially for Euclidean random fields. We study in this paper the extension of these notions to manifold indexed fields. We give conditions on the (local) self-similarity index that ensure the existence of fractional fields. Moreover, we explain how to identify the self-similar index. We describe a way of simulating Gaussian fractional fields.
LA - eng
KW - Self-similarity; stochastic fields; manifold; self-similarity; Gaussian field; stable field; Euclidean random field
UR - http://eudml.org/doc/222450
ER -

References

top
  1. P. Abry, P. Gonçalvès and P. Flandrin, Wavelets, spectrum analysis and 1 /f processes. Lect. Note Stat.103 (1995) 15–29.  
  2. A. Ayache and J. Lévy-Vehel, The Multifractional Brownian motion. Stat. Inference Stoch. Process.1 (2000) 7–18.  
  3. A. Ayache and J. Lévy-Vehel, On the identification of the pointwise Hölder exponent of the generalized multifractional Brownian motion. Stoc. Proc. Appl.111 (2004) 119–156.  
  4. A. Ayache, P. Bertrand and J. Lévy-Vehel, A central limit theorem for the generalized quadratic variation of the step fractional Brownian. Stat. Inference Stoch. Process.10 (2007) 1–27.  
  5. J.-M. Bardet, Testing for the presence of self-similarity of Gaussian time series having stationary increments. J. Time Ser. Anal.25 (2000) 497–515.  
  6. J.-M. Bardet and P. Bertrand, Identification of the multiscale fractional Brownian motion with biomechanical applications. J. Time Ser. Anal.28 (2007) 1–52.  
  7. B. Bekka, P. de la Harpe and A. Valette, Kazhdan’s Property (T). Cambridge University Press (2008).  
  8. A. Benassi, S. Jaffard and D. Roux, Gaussian processes and Pseudodifferential Elliptic operators. Revista Mathematica Iberoam.13 (1997) 19–90.  
  9. A. Benassi, S. Cohen and J. Istas, Identifying the multifractional function of a Gaussian process. Stat. Probab. Lett.39 (1998) 337–345.  
  10. A. Benassi, S. Cohen, J. Istas and S. Jaffard, Identification of filtered white noises. Stoc. Proc. Appl.75 (1998) 31–49.  
  11. A. Benassi, P. Bertrand, S. Cohen and J. Istas, Identification of the Hurst index of a step fractional Brownian motion. Stat. Inference Stoch. Process3 (2000) 101–111.  
  12. A. Benassi, S. Cohen and J. Istas, Identification and properties of real harmonizable fractional Lévy motions. Bernoulli8 (2002) 97–115.  
  13. A. Benassi, S. Cohen and J. Istas, On roughness indices for fractional fields. Bernoulli10 (2004) 357–373.  
  14. A. Begyn, Quadratic variations along irregular subdivisions for Gaussian processes. Electron. J. Probab.10 (2005) 691–717.  
  15. A. Begyn, Asymptotic expansion and central limit theorem for quadratic variations of Gaussian processes. Bernoulli13 (2007) 712–753.  
  16. A. Begyn, Functional limit theorems for generalized quadratic variations of Gaussian processes. Stoc. Proc. Appl.117 (2007) 1848–1869.  
  17. C. Berzin and J. Leon, Estimating the Hurst parameter. Stat. Inference Stock. Process.10 (2007) 49–73.  
  18. A. Bonami and A. Estrade, Anisotropic analysis of Gaussian models. J. Fourier Anal. Appl.9 (2004) 215–236.  
  19. V. Borrelli, F. Cazals and J.-M. Morvan, On the angular defect of triangulations and the pointwise approximation of curvatures, curves and surfaces’02. Comput. Aid. Geom. Des.20319–341.  
  20. J. Bretagnolle, D. Dacunha-Castelle and J.-L. Krivine, Lois stables et espaces Lp. Ann. Inst. Henri Poincaré2 (1969) 231–259.  
  21. A. Brouste, J. Istas and S. Lambert-Lacroix, On fractional Gaussian random fields simulation. J. Stat. Soft.1 (2007) 1–23.  
  22. A. Brouste, J. Istas and S. Lambert-Lacroix, On simulation of fractional Brownian motion indexed by a manifold. J. Stat. Soft.36 (2010).  
  23. N. Chentsov, Lévy’s Brownian motion of several parameters and generalized white noise. Theory Probab. Appl.2 (1957) 265–266.  
  24. J.-F. Coeurjolly, Simulation and identification of the fractional Brownian motion : a bibliographical and comparative study. J. Stat. Software5 (2000) 1–53.  
  25. J.-F. Coeurjolly, Estimating the parameters of a fractional Brownian Motion by discrete variations of its sample paths. Stat. Inference Stoch. Process.4 (2001) 199–227.  
  26. J.-F. Coeurjolly, Identification of multifractional Brownian motion. Bernoulli11 (2005) 987–1008.  
  27. J.-F. Coeurjolly, Hurst exponent estimation of locally self-similar Gaussian processes using sample quantiles. Ann. Statist.36 (2008) 1404–1434.  
  28. J.-F. Coeurjolly and J. Istas, Cramer-Rao bounds for fractional Brownian motions. Stat. Probab. Lett.53 (2001) 435–447.  
  29. S. Cohen, From self-similarity to local self-similarity : the estimation problem. Fractal in Engineering, edited by J. Lévy-Vehel and C. Tricot. Springer Verlag, Delft (1999).  
  30. S. Cohen and J. Istas, An universal estimator of local self-similarity. Preprint (2006).  
  31. S. Cohen and J. Istas, Fractional fields : Modelling and statistical applications (Submitted).  
  32. S. Cohen and M. Lifshits, Stationary Gaussian random fields on hyperbolic spaces and Euclidean spheres. To appear in ESAIM : PS.  
  33. S. Cohen, X. Guyon, O. Perrin and M. Pontier, Singularity functions for fractional processes : application to the fractional brownian sheet. Ann. Inst. Henri Poincaré42 (2006) 187–205.  
  34. D. Dacunha-Castelle and M. Duflo, Probabilités et Statistiques tome 2. Masson, Paris (1983).  
  35. R. Dalhaus, Efficient parameter estimation for self-similar processes. Ann. Statist.17 (1989) 1749–1766.  
  36. I. Daubechies, Orthonormal bases of compactly supported wavelets. Commun. Pure Appl. Math.41 (1988) 909–996.  
  37. S. Dégerine and S. Lambert-Lacroix, Partial autocorrelation function of a nonstationary time series. J. Multiv. Anal. (2003) 46–59.  
  38. R.L. Dobrushin, Automodel generalized random fields and their renorm group, in Multicomponent Random Systems, edited by R.L. Dobrushin and Ya. G. Sinai. Dekker, New York (1980) 153–198.  
  39. A. Dress, V. Moulton and W. Terhalle, T-theory : An overview, Eur. J. Comb.17 (1996) 161–175.  
  40. A. Erdélyi, W. Magnus, F. Oberhettinger and F. Tricomi, Higher transcendental functions (Bateman manuscript project). McGraw-Hill 2 (1953)  
  41. K. Falconer, Tangent fields and the local structure of random fields. J. Theor. Probab.15 (2002) 731–750.  
  42. K. Falconer, The local structure of random processes. J. Lond. Math. Soc. 67 (2003) 657–672.  
  43. J. Faraut, Fonction brownienne sur une variété riemannienne. Séminaire de probabilités de Strasbourg7 (1973) 61–76.  
  44. J. Faraut and H. Harzallah, Distances hilbertiennes invariantes sur un espace homogène. Ann. Inst. Fourier24 (1974) 171–217.  
  45. S. Gallot, D. Hulin and J. Lafontaine, Riemannian Geometry, 2nd edition. Springer-Verlag (1993).  
  46. R. Gangolli, Positive definite kernels on homogeneous spaces and certain stochastic processes related to Lévy’s Brownian motion of several parameters. Ann. Inst. Henri Poincaré3 (1967) 121–226.  
  47. X. Guyon and J. Leon, Convergence en loi des H-variations d’un processus gaussien stationnaire. Ann. Inst. Henri Poincaré25 (1989) 265–282.  
  48. S. Helgason, Differential Geometry and Symmetric spaces. Academic Press (1962).  
  49. E. Herbin and E. Merzbach, A set-indexed fractional Brownian motion. J. Theor. Probab.19 (2006) 337–364.  
  50. E. Herbin and E. Merzbach, Stationarity and self-similarity characterization of the set-indexed fractional Brownian motion. J. Theor. Probab.22 (2009) 1010–1029.  
  51. J. Istas, Spherical and hyperbolic fractional Brownian motion. Electron. Comm. Probab.10 (2005) 254–262.  
  52. J. Istas, On fractional stable fields indexed by metric spaces. Electron. Comm. Probab. 11 (2006) 242–251.  
  53. J. Istas, Karhunen-Loève expansion of spherical fractional Brownian motions. Stat. Probab. Lett.76 (2006) 1578–1583.  
  54. J. Istas, Quadratic variations of spherical fractional Brownian motions, Stoc. Proc. Appl.117 (2007) 476–486.  
  55. J. Istas, Identifying the anisotropical function of a d-dimensional Gaussian self-similar process with stationary increments. Stat. Inf. Stoc. Proc.10-1 (2007) 97–106.  
  56. J. Istas and C. Lacaux, On locally self-similar fractional random fields indexed by a manifold. preprint.  
  57. J. Istas and G. Lang, Variations quadratiques et estimation de l’exposant de Hölder local d’un processus gaussien. C. R. Acad. Sci. Sér. I Paris319 (1994) 201–206.  
  58. J. Istas and G. Lang, Quadratic variations and estimation of the Hölder index of a Gaussian process. Ann. Inst. Henri Poincaré33 (1997) 407–436.  
  59. J. Kent and A. Wood, Estimating the fractal dimension of a locally self-similar Gaussian process using increments. J. Roy. Statist. Soc. B59 (1997) 679–700.  
  60. A. Koldobsky, Schoenberg’s problem on positive definite functions. Algebra Anal.3 (1991) 78–85.  
  61. A. Koldobsky and Y. Lonke, A short proof of Schoenberg’s conjecture on positive definite functions. Bull. Lond. Math. Soc. (1999) 693–699.  
  62. A. Kolmogorov, Wienersche Spiralen und einige andere interessante Kurven im Hilbertsche Raum (German). C. R. (Dokl.) Acad. Sci. URSS26 (1940) 115–118.  
  63. C. Lacaux, Real harmonizable multifractional Lévy motions. Ann. Inst. Henri Poincaré40 (2004) 259–277.  
  64. G. Lang and F. Roueff, Semi-parametric estimation of the Hölder exponent of a stationary Gaussian process with minimax rates. Stat. Inf. Stoc. Proc.4-3 (2001) 283–306.  
  65. P. Lévy, Processus stochastiques et mouvement Brownien. Gauthier-Vilars (1965).  
  66. T. Lindstrom, Fractional Brownian fields as integrals of white noise. Bull. Lond. Math. Soc.25 (1993) 83–88.  
  67. M. Maejima, A remark on self-similar processes with stationary increments. Can. J. Stat.14 (1986) 81–82.  
  68. B.B. Mandelbrot and J.W. Van Ness, Fractional Brownian motions, fractional noises and applications, SIAM Rev.10 (1968) 422–437.  
  69. R. Peltier and J. Lévy-Vehel, Multifractional Brownian motion : definition and preliminary results. Rapport de recherche de l’INRIA 2645 (1996).  
  70. P. Petersen, Riemannian Geometry. Graduate Texts in Mathematics, Springer (1998).  
  71. E. Rafajlowicz, Testing (non-)existence of input-output relationships by estimating fractal dimensions. IEEE Trans. Signal Process.52 (2004) 3151–3159.  
  72. G. Robertson, Crofton formulae and geodesic distance in hyperbolic spaces. J. Lie Theory8 (1998) 163–172.  
  73. G. Robertson and T. Steger, Negative definite kernels and a dynamical characterization of property T for countable groups. Ergod. Theory Dyn. Syst.18 (1998) 247–253.  
  74. W. Rudin, Fourier analysis on groups. Wiley (1962).  
  75. G. Samorodnitsky, Long memory and self-similar processes. Annales de la Faculté des Sciences Toulouse15 (2006) 107–123.  
  76. G. Samorodnitsky and M. Taqqu, Stable non-Gaussian random processes : stochastic models with infinite variance. Chapman & Hall, New York (1994).  
  77. I. Schönberg, Metric spaces and positive definite functions. Ann. Math.39 (1938) 811–841.  
  78. R. Seeley, Spherical harmonics. Am. Math. Mon.73 (1966) 115–121.  
  79. S. Stoev and M. Taqqu, Stochastic properties of the linear multifractional stable motion. Adv. Appl. Prob.36 (2004) 1085–1115.  
  80. G. Szego, Orthogonal Polynomials, 4th edition, in Amer. Math. Soc. Providence, RI (1975).  
  81. S. Takenaka, Integral-geometric construction of self-similar stable processes. Nagoya Math. J.123 (1991) 1–12.  
  82. S. Takenaka, I. Kubo and H. Urakawa, Brownian motion parametrized with metric space of constant curvature. Nagoya Math. J.82 (1981) 131–140.  
  83. A. Valette, Les représentations uniformément bornées associées à un arbre réel. Bull. Soc. Math. Belgique42 (1990) 747–760.  
  84. H. Wang, Two-point homogeneous spaces. Ann. Math.2 (1952) 177–191.  
  85. A. Yaglom, Some classes of random fields in n-dimensional space, related to stationary random processes. Theory Probab. Appl.2 (1957) 273–320.  
  86. A. Zaanen, Linear Anal. North Holland Publishing Co (1960).  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.