Spectral Real Semigroups
M. Dickmann[1]; A. Petrovich[2]
- [1] Projets Logique Mathématique et Topologie et Géométrie Algébriques, Institut de Mathématiques de Jussieu, Universités Paris 6 et 7, Paris, France
- [2] Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Annales de la faculté des sciences de Toulouse Mathématiques (2012)
- Volume: 21, Issue: 2, page 359-412
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topDickmann, M., and Petrovich, A.. "Spectral Real Semigroups." Annales de la faculté des sciences de Toulouse Mathématiques 21.2 (2012): 359-412. <http://eudml.org/doc/250995>.
@article{Dickmann2012,
abstract = {The notion of a real semigroup was introduced in [8] to provide a framework for the investigation of the theory of (diagonal) quadratic forms over commutative, unitary, semi-real rings. In this paper we introduce and study an outstanding class of such structures, that we call spectral real semigroups (SRS). Our main results are: (i) The existence of a natural functorial duality between the category of SRSs and that of hereditarily normal spectral spaces; (ii) Characterization of the SRSs as the real semigroups whose representation partial order is a distributive lattice; (iii) Determination of all quotients of SRSs, and (iv) Spectrality of the real semigroup associated to any lattice-ordered ring.},
affiliation = {Projets Logique Mathématique et Topologie et Géométrie Algébriques, Institut de Mathématiques de Jussieu, Universités Paris 6 et 7, Paris, France; Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina},
author = {Dickmann, M., Petrovich, A.},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {spectral real semigroups; abstract real spectra; real reduced multirings; quadratic forms over semi-real rings},
language = {eng},
month = {4},
number = {2},
pages = {359-412},
publisher = {Université Paul Sabatier, Toulouse},
title = {Spectral Real Semigroups},
url = {http://eudml.org/doc/250995},
volume = {21},
year = {2012},
}
TY - JOUR
AU - Dickmann, M.
AU - Petrovich, A.
TI - Spectral Real Semigroups
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2012/4//
PB - Université Paul Sabatier, Toulouse
VL - 21
IS - 2
SP - 359
EP - 412
AB - The notion of a real semigroup was introduced in [8] to provide a framework for the investigation of the theory of (diagonal) quadratic forms over commutative, unitary, semi-real rings. In this paper we introduce and study an outstanding class of such structures, that we call spectral real semigroups (SRS). Our main results are: (i) The existence of a natural functorial duality between the category of SRSs and that of hereditarily normal spectral spaces; (ii) Characterization of the SRSs as the real semigroups whose representation partial order is a distributive lattice; (iii) Determination of all quotients of SRSs, and (iv) Spectrality of the real semigroup associated to any lattice-ordered ring.
LA - eng
KW - spectral real semigroups; abstract real spectra; real reduced multirings; quadratic forms over semi-real rings
UR - http://eudml.org/doc/250995
ER -
References
top- Andradas (C.), Bröcker (L.), Ruiz (J.).— Constructible Sets in Real Geometry, A Series of Modern Surveys in Mathematics 33, Springer-Verlag, Berlin, Heidelberg, New York (1996). Zbl0873.14044MR1393194
- Bochnak (J.), Coste (M.), Roy (M.F.).— Géométrie algébrique réelle, Ergeb. Math.12, Springer-Verlag, Berlin, Heidelberg, New York (1987). Zbl0633.14016MR949442
- Bigard (A.), Keimel (K.), Wolfenstein (S.).— Groupes et Anneaux Reticulés, Lecture Notes Math.608, Springer-Verlag, Berlin, (1977). Zbl0384.06022MR552653
- Chang (C.C.) and Keisler (H.J.).— Model Theory, North-Holland Publ. Co. Amsterdam, (1990). Zbl0697.03022MR1059055
- Delzell (C.), Madden (J.).— A completely normal spectral space that is not a real spectrum, J. Algebra 169, p. 71-77 (1994). Zbl0833.14030MR1296582
- Dickmann (M.), Miraglia (F.).— Special Groups. Boolean-Theoretic Methods in the Theory of Quadratic Forms, Memoirs Amer. Math. Soc., 689 (2000). MR1677935
- Dickmann (M.), Miraglia (F.).— Faithfully Quadratic Rings, 160 pp., (submitted) (2010).
- Dickmann (M.), Petrovich (A.).— Real Semigroups and Abstract Real Spectra. I, Contemporary Math. 344, p. 99-119, Amer. Math. Soc. (2004). Zbl1117.13026MR2058670
- Dickmann (M.), Petrovich (A.).— The Three-Valued Logic of Quadratic Form Theory over Real Rings, in Andrzej Mostowski and Foundational Studies (A. Ehrenfeucht, V. W. Marek, M. Srebrny, eds.), IOS Press, Amsterdam, p. 49-67 (2008). Zbl1148.03025MR2422679
- Dickmann (M.), Petrovich (A.).— Real Semigroups, Real Spectra and Quadratic Forms over Rings, in preparation, approx. 250 pp. Preliminary version available online at http://www.maths.manchester.ac.uk/raag/index.php?preprint=0339 MR2058670
- Dickmann (M.), Schwartz (N.), Tressl (M.).— Spectral Spaces (in preparation).
- Hodges (W.).— Model Theory, Encyclopedia of Math. and Appl.42, Cambridge Univ. Press (1993). Zbl0789.03031MR1221741
- Knebush (M.), Scheiderer (C.).— Einführung in die reelle Algebra, Vieweg, Braunschweig, x + 189 pp. (1989). Zbl0732.12001
- Marshall (M.).— Spaces of Orderings and Abstract Real Spectra, Lecture Notes Math.1636, Springer-Verlag, Berlin (1996). Zbl0866.12001MR1438785
- Miraglia (F.).— Introduction to Partially Ordered Structures and Sheaves, Polimetrica Scientific Publishers, Contemporary Logic Series 1, Milan (2007). Zbl1234.06001
- Prestel (A.), Schwartz (N.).— Model Theory of Real Closed Rings, Fields Inst. Communications 32, p. 261-290 (2002). Zbl1018.12009MR1928375
- Schwartz (N.).— The basic theory of real closed spaces, Memoirs Amer. Math. Soc., 397 (1989). Zbl0697.14015MR953224
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.