Spectral Real Semigroups

M. Dickmann[1]; A. Petrovich[2]

  • [1] Projets Logique Mathématique et Topologie et Géométrie Algébriques, Institut de Mathématiques de Jussieu, Universités Paris 6 et 7, Paris, France
  • [2] Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina

Annales de la faculté des sciences de Toulouse Mathématiques (2012)

  • Volume: 21, Issue: 2, page 359-412
  • ISSN: 0240-2963

Abstract

top
The notion of a real semigroup was introduced in [8] to provide a framework for the investigation of the theory of (diagonal) quadratic forms over commutative, unitary, semi-real rings. In this paper we introduce and study an outstanding class of such structures, that we call spectral real semigroups (SRS). Our main results are: (i) The existence of a natural functorial duality between the category of SRSs and that of hereditarily normal spectral spaces; (ii) Characterization of the SRSs as the real semigroups whose representation partial order is a distributive lattice; (iii) Determination of all quotients of SRSs, and (iv) Spectrality of the real semigroup associated to any lattice-ordered ring.

How to cite

top

Dickmann, M., and Petrovich, A.. "Spectral Real Semigroups." Annales de la faculté des sciences de Toulouse Mathématiques 21.2 (2012): 359-412. <http://eudml.org/doc/250995>.

@article{Dickmann2012,
abstract = {The notion of a real semigroup was introduced in [8] to provide a framework for the investigation of the theory of (diagonal) quadratic forms over commutative, unitary, semi-real rings. In this paper we introduce and study an outstanding class of such structures, that we call spectral real semigroups (SRS). Our main results are: (i) The existence of a natural functorial duality between the category of SRSs and that of hereditarily normal spectral spaces; (ii) Characterization of the SRSs as the real semigroups whose representation partial order is a distributive lattice; (iii) Determination of all quotients of SRSs, and (iv) Spectrality of the real semigroup associated to any lattice-ordered ring.},
affiliation = {Projets Logique Mathématique et Topologie et Géométrie Algébriques, Institut de Mathématiques de Jussieu, Universités Paris 6 et 7, Paris, France; Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina},
author = {Dickmann, M., Petrovich, A.},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {spectral real semigroups; abstract real spectra; real reduced multirings; quadratic forms over semi-real rings},
language = {eng},
month = {4},
number = {2},
pages = {359-412},
publisher = {Université Paul Sabatier, Toulouse},
title = {Spectral Real Semigroups},
url = {http://eudml.org/doc/250995},
volume = {21},
year = {2012},
}

TY - JOUR
AU - Dickmann, M.
AU - Petrovich, A.
TI - Spectral Real Semigroups
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2012/4//
PB - Université Paul Sabatier, Toulouse
VL - 21
IS - 2
SP - 359
EP - 412
AB - The notion of a real semigroup was introduced in [8] to provide a framework for the investigation of the theory of (diagonal) quadratic forms over commutative, unitary, semi-real rings. In this paper we introduce and study an outstanding class of such structures, that we call spectral real semigroups (SRS). Our main results are: (i) The existence of a natural functorial duality between the category of SRSs and that of hereditarily normal spectral spaces; (ii) Characterization of the SRSs as the real semigroups whose representation partial order is a distributive lattice; (iii) Determination of all quotients of SRSs, and (iv) Spectrality of the real semigroup associated to any lattice-ordered ring.
LA - eng
KW - spectral real semigroups; abstract real spectra; real reduced multirings; quadratic forms over semi-real rings
UR - http://eudml.org/doc/250995
ER -

References

top
  1. Andradas (C.), Bröcker (L.), Ruiz (J.).— Constructible Sets in Real Geometry, A Series of Modern Surveys in Mathematics 33, Springer-Verlag, Berlin, Heidelberg, New York (1996). Zbl0873.14044MR1393194
  2. Bochnak (J.), Coste (M.), Roy (M.F.).— Géométrie algébrique réelle, Ergeb. Math.12, Springer-Verlag, Berlin, Heidelberg, New York (1987). Zbl0633.14016MR949442
  3. Bigard (A.), Keimel (K.), Wolfenstein (S.).— Groupes et Anneaux Reticulés, Lecture Notes Math.608, Springer-Verlag, Berlin, (1977). Zbl0384.06022MR552653
  4. Chang (C.C.) and Keisler (H.J.).— Model Theory, North-Holland Publ. Co. Amsterdam, (1990). Zbl0697.03022MR1059055
  5. Delzell (C.), Madden (J.).— A completely normal spectral space that is not a real spectrum, J. Algebra 169, p. 71-77 (1994). Zbl0833.14030MR1296582
  6. Dickmann (M.), Miraglia (F.).— Special Groups. Boolean-Theoretic Methods in the Theory of Quadratic Forms, Memoirs Amer. Math. Soc., 689 (2000). MR1677935
  7. Dickmann (M.), Miraglia (F.).— Faithfully Quadratic Rings, 160 pp., (submitted) (2010). 
  8. Dickmann (M.), Petrovich (A.).— Real Semigroups and Abstract Real Spectra. I, Contemporary Math. 344, p. 99-119, Amer. Math. Soc. (2004). Zbl1117.13026MR2058670
  9. Dickmann (M.), Petrovich (A.).— The Three-Valued Logic of Quadratic Form Theory over Real Rings, in Andrzej Mostowski and Foundational Studies (A. Ehrenfeucht, V. W. Marek, M. Srebrny, eds.), IOS Press, Amsterdam, p. 49-67 (2008). Zbl1148.03025MR2422679
  10. Dickmann (M.), Petrovich (A.).— Real Semigroups, Real Spectra and Quadratic Forms over Rings, in preparation, approx. 250 pp. Preliminary version available online at http://www.maths.manchester.ac.uk/raag/index.php?preprint=0339 MR2058670
  11. Dickmann (M.), Schwartz (N.), Tressl (M.).— Spectral Spaces (in preparation). 
  12. Hodges (W.).— Model Theory, Encyclopedia of Math. and Appl.42, Cambridge Univ. Press (1993). Zbl0789.03031MR1221741
  13. Knebush (M.), Scheiderer (C.).— Einführung in die reelle Algebra, Vieweg, Braunschweig, x + 189 pp. (1989). Zbl0732.12001
  14. Marshall (M.).— Spaces of Orderings and Abstract Real Spectra, Lecture Notes Math.1636, Springer-Verlag, Berlin (1996). Zbl0866.12001MR1438785
  15. Miraglia (F.).— Introduction to Partially Ordered Structures and Sheaves, Polimetrica Scientific Publishers, Contemporary Logic Series 1, Milan (2007). Zbl1234.06001
  16. Prestel (A.), Schwartz (N.).— Model Theory of Real Closed Rings, Fields Inst. Communications 32, p. 261-290 (2002). Zbl1018.12009MR1928375
  17. Schwartz (N.).— The basic theory of real closed spaces, Memoirs Amer. Math. Soc., 397 (1989). Zbl0697.14015MR953224

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.