The search session has expired. Please query the service again.
In this paper, we construct an object, called a system of approximate roots of a valuation, centered in a regular local ring, which describes the fine structure of the valuation (namely, its valuation ideals and the graded algebra). We apply this construction to valuations associated to a point of the real spectrum of a regular local ring . We give two versions of the construction: the first, much simpler, in a special case (roughly speaking, that of rank 1 valuations), the second – in the case...
Let ⊆ be ideals of a Noetherian ring R, and let N be a non-zero finitely generated R-module. The set Q̅*(,N) of quintasymptotic primes of with respect to N was originally introduced by McAdam. Also, it has been shown by Naghipour and Schenzel that the set of associated primes is finite. The purpose of this paper is to show that the topology on N defined by is finer than the topology defined by if and only if is disjoint from the quintasymptotic primes of with respect to N. Moreover, we show...
Let be a continuous, piecewise-polynomial function. The Pierce-Birkhoff conjecture (1956) is that any such is representable in the form , for some finite collection of polynomials . (A simple example is .) In 1984, L. Mahé and, independently, G. Efroymson, proved this for ; it remains open for . In this paper we prove an analogous result for “generalized polynomials” (also known as signomials), i.e., where the exponents are allowed to be arbitrary real numbers, and not just natural numbers;...
Let F be a homogeneous real polynomial of even degree in any number of variables. We consider the problem of giving explicit conditions on the coefficients so that F is positive definite or positive semi-definite. In this note we produce a necessary condition for positivity, and a sufficient condition for non-negativity, in terms of positivity or semi-positivity of a one-variable characteristic polynomial of F. Also, we revisit the known sufficient condition in terms of Hankel matrices.
The complete real spectrum of a commutative ring with is introduced. Points of the complete real spectrum are triples , where is a real prime of , is a real valuation of the field and is an ordering of the residue field of . is shown to have the structure of a spectral space in the sense of Hochster [5]. The specialization relation on is considered. Special attention is paid to the case where the ring in question is a real holomorphy ring.
Consider a compact subset of real -space defined by polynomial inequalities . For a polynomial non-negative on , natural sufficient conditions are given (in terms of first and second derivatives at the zeros of in ) for to have a presentation of the form , a sum of squares of polynomials. The conditions are much less restrictive than the conditions given by Scheiderer in [11, Cor. 2.6]. The proof uses Scheiderer’s main theorem in [11] as well as arguments from quadratic form theory...
Experience shows that in geometric situations the separating ideal associated with two orderings of a ring measures the degree of tangency of the corresponding ultrafilters of semialgebraic sets. A related notion of separating ideals is introduced for pairs of valuations of a ring. The comparison of both types of separating ideals helps to understand how a point on a surface is approached by different half-branches of curves.
The notion of a real semigroup was introduced in [8] to provide a framework for the investigation of the theory of (diagonal) quadratic forms over commutative, unitary, semi-real rings. In this paper we introduce and study an outstanding class of such structures, that we call spectral real semigroups (SRS). Our main results are: (i) The existence of a natural functorial duality between the category of SRSs and that of hereditarily normal spectral spaces; (ii) Characterization of the SRSs as the...
Let K be an ordered field. The set X(K) of its orderings can be topologized to make it a Boolean space. Moreover, it has been shown by Craven that for any Boolean space Y there exists a field K such that X(K) is homeomorphic to Y. Becker's higher level ordering is a generalization of the usual concept of ordering. In a similar way to the case of ordinary orderings one can define a topology on the space of orderings of fixed exact level. We show that it need not be Boolean. However, our main theorem...
Currently displaying 1 –
13 of
13