Additive Covariance kernels for high-dimensional Gaussian Process modeling
Nicolas Durrande[1]; David Ginsbourger[2]; Olivier Roustant[3]
- [1] School of mathematics and statistics, University of Sheffield, Sheffield S3 7RH, UK, Ecole Nationale Supérieure des Mines, FAYOL-EMSE, LSTI, F-42023 Saint-Etienne, France
- [2] Institute of Mathematical Statistics and Actuarial Science, University of Berne, Alpeneggstrasse 22, 3012 Bern, Switzerland
- [3] Ecole Nationale Supérieure des Mines, FAYOL-EMSE, LSTI, F-42023 Saint-Etienne, France
Annales de la faculté des sciences de Toulouse Mathématiques (2012)
- Volume: 21, Issue: 3, page 481-499
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topReferences
top- Azaïs (J.M.) and Wschebor (M.).— Level sets and extrema of random processes and fields, Wiley Online Library (2009). Zbl1168.60002MR2478201
- Bach (F.).— Exploring large feature spaces with hierarchical multiple kernel learning, Arxiv preprint arXiv:0809.1493 (2008).
- Buja (A.), Hastie (T.) and Tibshirani (R.).— Linear smoothers and additive models, The Annals of Statistics, p. 453-510 (1989). Zbl0689.62029MR994249
- Chilès (J.P.) and Delfiner (P.).— Geostatistics: modeling spatial uncertainty, volume 344, Wiley-Interscience (1999). Zbl1256.86007MR1679557
- Cressie (N.).— Statistics for spatial data, Terra Nova, 4(5), p. 613-617 (1992). Zbl0799.62002MR1239641
- Fang (K.).— Design and modeling for computer experiments, volume 6. CRC Press (2006). Zbl1093.62117MR2223960
- Fortet (R.M.).— Les operateurs integraux dont le noyau est une covariance, Trabajos de estadística y de investigación operativa, 36(3), p. 133-144 (1985). Zbl0733.47030
- Gaetan (C.) and Guyon (X.).— Spatial statistics and modeling, Springer Verlag (2009). Zbl1271.62214MR2569034
- Ginsbourger (D.), Dupuy (D.), Badea (A.), Carraro (L.) and Roustant (O.).— A note on the choice and the estimation of kriging models for the analysis of deterministic computer experiments, Applied Stochastic Models in Business and Industry, 25(2), p. 115-131 (2009). Zbl1224.62149MR2510851
- Gunn (S.R.) and Brown (M.).— Supanova: A sparse, transparent modelling approach, In Neural Networks for Signal Processing IX, 1999, Proceedings of the 1999 IEEE Signal Processing Society Workshop, p. 21-30. IEEE (1999).
- Hastie (T.).— gam: Generalized Additive Models, 2011, R package version 1.04.1.
- Hastie (T.J.) and Tibshirani (R.J.).— Generalized additive models, Chapman & Hall/CRC (1990). Zbl0747.62061MR1082147
- Loeppky (J.L.), Sacks (J.) and Welch (W.J.).— Choosing the sample size of a computer experiment: A practical guide, Technometrics, 51(4), p. 366-376 (2009). MR2756473
- Muehlenstaedt (T.), Roustant (O.), Carraro (L.) and Kuhnt (S.).— Data-driven Kriging models based on FANOVA-decomposition, to appear in Statistics and Computing.
- Newey (W.K.).— Kernel estimation of partial means and a general variance estimator, Econometric Theory, 10(02), p. 1-21 (1994). MR1293201
- Rasmussen (C.E.) and Williams (C.K.I.).— Gaussian processes for machine learning (2005). MR2514435
- Roustant (O.), Ginsbourger (D.) and Deville (Y.).— DiceKriging: Kriging methods for computer experiments, 2011, R package version 1.3.
- Saltelli (A.), Chan (K.), Scott (E.M.)et al.— Sensitivity analysis, volume 134, Wiley New York (2000). Zbl1152.62071MR1886391
- Santner (T.J.), Williams (B.J.) and Notz (W.).— The design and analysis of computer experiments, Springer Verlag (2003). Zbl1041.62068MR2160708
- Sobol (I.M.).— Global sensitivity indices for nonlinear mathematical models and their monte carlo estimates, Mathematics and Computers in Simulation, 55(1-3), p. 271-280, (2001). Zbl1005.65004MR1823119
- Stone (C.J.).— Additive regression and other nonparametric models, The annals of Statistics, p. 689-705 (1985). Zbl0605.62065MR790566
- R Team.— R: A language and environment for statistical computing, R Foundation for Statistical Computing Vienna Austria ISBN, 3(10) (2008).