Page 1

Displaying 1 – 20 of 20

Showing per page

A central limit theorem for triangular arrays of weakly dependent random variables, with applications in statistics

Michael H. Neumann (2013)

ESAIM: Probability and Statistics

We derive a central limit theorem for triangular arrays of possibly nonstationary random variables satisfying a condition of weak dependence in the sense of Doukhan and Louhichi [Stoch. Proc. Appl. 84 (1999) 313–342]. The proof uses a new variant of the Lindeberg method: the behavior of the partial sums is compared to that of partial sums of dependent Gaussian random variables. We also discuss a few applications in statistics which show that our central limit theorem is tailor-made for statistics...

Additive Covariance kernels for high-dimensional Gaussian Process modeling

Nicolas Durrande, David Ginsbourger, Olivier Roustant (2012)

Annales de la faculté des sciences de Toulouse Mathématiques

Gaussian Process models are often used for predicting and approximating expensive experiments. However, the number of observations required for building such models may become unrealistic when the input dimension increases. In oder to avoid the curse of dimensionality, a popular approach in multivariate smoothing is to make simplifying assumptions like additivity. The ambition of the present work is to give an insight into a family of covariance kernels that allows combining the features of Gaussian...

Application of MCMC to change point detection

Jaromír Antoch, David Legát (2008)

Applications of Mathematics

A nonstandard approach to change point estimation is presented in this paper. Three models with random coefficients and Bayesian approach are used for modelling the year average temperatures measured in Prague Klementinum. The posterior distribution of the change point and other parameters are estimated from the random samples generated by the combination of the Metropolis-Hastings algorithm and the Gibbs sampler.

Bias correction on censored least squares regression models

Jesus Orbe, Vicente Núñez-Antón (2012)

Kybernetika

This paper proposes a bias reduction of the coefficients' estimator for linear regression models when observations are randomly censored and the error distribution is unknown. The proposed bias correction is applied to the weighted least squares estimator proposed by Stute [28] [W. Stute: Consistent estimation under random censorship when covariables are present. J. Multivariate Anal. 45 (1993), 89-103.], and it is based on model-based bootstrap resampling techniques that also allow us to work with...

Bootstrap clustering for graph partitioning

Philippe Gambette, Alain Guénoche (2011)

RAIRO - Operations Research - Recherche Opérationnelle

Given a simple undirected weighted or unweighted graph, we try to cluster the vertex set into communities and also to quantify the robustness of these clusters. For that task, we propose a new method, called bootstrap clustering which consists in (i) defining a new clustering algorithm for graphs, (ii) building a set of graphs similar to the initial one, (iii) applying the clustering method to each of them, making a profile (set) of partitions, (iv) computing a consensus partition for this profile,...

Bootstrap clustering for graph partitioning∗

Philippe Gambette, Alain Guénoche (2012)

RAIRO - Operations Research

Given a simple undirected weighted or unweighted graph, we try to cluster the vertex set into communities and also to quantify the robustness of these clusters. For that task, we propose a new method, called bootstrap clustering which consists in (i) defining a new clustering algorithm for graphs, (ii) building a set of graphs similar to the initial one, (iii) applying the clustering method to each of them, making a profile (set) of partitions, (iv) computing a consensus partition for this profile,...

Bootstrap in nonstationary autoregression

Zuzana Prášková (2002)

Kybernetika

The first-order autoregression model with heteroskedastic innovations is considered and it is shown that the classical bootstrap procedure based on estimated residuals fails for the least-squares estimator of the autoregression coefficient. A different procedure called wild bootstrap, respectively its modification is considered and its consistency in the strong sense is established under very mild moment conditions.

Bootstrap method for central and intermediate order statistics under power normalization

Haroon Mohamed Barakat, E. M. Nigm, O. M. Khaled (2015)

Kybernetika

It has been known for a long time that for bootstrapping the distribution of the extremes under the traditional linear normalization of a sample consistently, the bootstrap sample size needs to be of smaller order than the original sample size. In this paper, we show that the same is true if we use the bootstrap for estimating a central, or an intermediate quantile under power normalization. A simulation study illustrates and corroborates theoretical results.

Complete convergence theorems for normed row sums from an array of rowwise pairwise negative quadrant dependent random variables with application to the dependent bootstrap

Andrew Rosalsky, Yongfeng Wu (2015)

Applications of Mathematics

Let { X n , j , 1 j m ( n ) , n 1 } be an array of rowwise pairwise negative quadrant dependent mean 0 random variables and let 0 < b n . Conditions are given for j = 1 m ( n ) X n , j / b n 0 completely and for max 1 k m ( n ) | j = 1 k X n , j | / b n 0 completely. As an application of these results, we obtain a complete convergence theorem for the row sums j = 1 m ( n ) X n , j * of the dependent bootstrap samples { { X n , j * , 1 j m ( n ) } , n 1 } arising from a sequence of i.i.d. random variables { X n , n 1 } .

Exponential smoothing and resampling techniques in time series prediction

Maria Manuela Neves, Clara Cordeiro (2010)

Discussiones Mathematicae Probability and Statistics

Time series analysis deals with records that are collected over time. The objectives of time series analysis depend on the applications, but one of the main goals is to predict future values of the series. These values depend, usually in a stochastic manner, on the observations available at present. Such dependence has to be considered when predicting the future from its past, taking into account trend, seasonality and other features of the data. Some of the most successful forecasting methods are...

Inference on overlap coefficients under the Weibull distribution : equal shape parameter

Obaid Al-Saidy, Hani M. Samawi, Mohammad F. Al-Saleh (2005)

ESAIM: Probability and Statistics

In this paper we consider three measures of overlap, namely Matusia’s measure ρ , Morisita’s measure λ and Weitzman’s measure Δ . These measures are usually used in quantitative ecology and stress-strength models of reliability analysis. Herein we consider two Weibull distributions having the same shape parameter and different scale parameters. This distribution is known to be the most flexible life distribution model with two parameters. Monte Carlo evaluations are used to study the bias and precision...

Inference on overlap coefficients under the Weibull distribution: Equal shape parameter

Obaid Al-Saidy, Hani M. Samawi, Mohammad F. Al-Saleh (2010)

ESAIM: Probability and Statistics

In this paper we consider three measures of overlap, namely Matusia's measure ρ, Morisita's measure λ and Weitzman's measure Δ. These measures are usually used in quantitative ecology and stress-strength models of reliability analysis. Herein we consider two Weibull distributions having the same shape parameter and different scale parameters. This distribution is known to be the most flexible life distribution model with two parameters. Monte Carlo evaluations are used to study the bias and precision...

Structural breaks in dependent, heteroscedastic, and extremal panel data

Matúš Maciak, Barbora Peštová, Michal Pešta (2018)

Kybernetika

New statistical procedures for a change in means problem within a very general panel data structure are proposed. Unlike classical inference tools used for the changepoint problem in the panel data framework, we allow for mutually dependent panels, unequal variances across the panels, and possibly an extremely short follow up period. Two competitive ratio type test statistics are introduced and their asymptotic properties are derived for a large number of available panels. The proposed tests are...

The least trimmed squares. Part I: Consistency

Jan Ámos Víšek (2006)

Kybernetika

The consistency of the least trimmed squares estimator (see Rousseeuw [Rous] or Hampel et al. [HamRonRouSta]) is proved under general conditions. The assumptions employed in paper are discussed in details to clarify the consequences for the applications.

The least trimmed squares. Part III: Asymptotic normality

Jan Ámos Víšek (2006)

Kybernetika

Asymptotic normality of the least trimmed squares estimator is proved under general conditions. At the end of paper a discussion of applicability of the estimator (including the discussion of algorithm for its evaluation) is offered.

Validity of the parametric bootstrap for goodness-of-fit testing in semiparametric models

Christian Genest, Bruno Rémillard (2008)

Annales de l'I.H.P. Probabilités et statistiques

In testing that a given distribution Pbelongs to a parameterized family 𝒫 , one is often led to compare a nonparametric estimateAn of some functional A of P with an element Aθn corresponding to an estimate θn of θ. In many cases, the asymptotic distribution of goodness-of-fit statistics derived from the process n1/2(An−Aθn) depends on the unknown distribution P. It is shown here that if the sequences An and θn of estimators are regular in some sense, a parametric bootstrap approach yields valid approximations...

Currently displaying 1 – 20 of 20

Page 1