On the approximation of functions on a Hodge manifold

Alessandro Ghigi[1]

  • [1] Dipartimento di Matematica e Applicazioni, Università degli Studi di Milano Bicocca

Annales de la faculté des sciences de Toulouse Mathématiques (2012)

  • Volume: 21, Issue: 4, page 769-781
  • ISSN: 0240-2963

Abstract

top
If ( M , ω ) is a Hodge manifold and f C ( M , ) we construct a canonical sequence of functions f N such that f N f in the C topology. These functions have a simple geometric interpretation in terms of the moment map and they are real algebraic, in the sense that they are regular functions when M is regarded as a real algebraic variety. The definition of f N is inspired by Berezin-Toeplitz quantization and by ideas of Donaldson. The proof follows quickly from known results of Fine, Liu and Ma.

How to cite

top

Ghigi, Alessandro. "On the approximation of functions on a Hodge manifold." Annales de la faculté des sciences de Toulouse Mathématiques 21.4 (2012): 769-781. <http://eudml.org/doc/251007>.

@article{Ghigi2012,
abstract = {If $(M, \omega )$ is a Hodge manifold and $f\in C^\infty (M,\mathbb\{R\})$ we construct a canonical sequence of functions $f_N$ such that $f_N \rightarrow f$ in the $C^\infty $ topology. These functions have a simple geometric interpretation in terms of the moment map and they are real algebraic, in the sense that they are regular functions when $M$ is regarded as a real algebraic variety. The definition of $f_N$ is inspired by Berezin-Toeplitz quantization and by ideas of Donaldson. The proof follows quickly from known results of Fine, Liu and Ma.},
affiliation = {Dipartimento di Matematica e Applicazioni, Università degli Studi di Milano Bicocca},
author = {Ghigi, Alessandro},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {Kähler manifold; Hodge manifold; Bergman metric},
language = {eng},
month = {10},
number = {4},
pages = {769-781},
publisher = {Université Paul Sabatier, Toulouse},
title = {On the approximation of functions on a Hodge manifold},
url = {http://eudml.org/doc/251007},
volume = {21},
year = {2012},
}

TY - JOUR
AU - Ghigi, Alessandro
TI - On the approximation of functions on a Hodge manifold
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2012/10//
PB - Université Paul Sabatier, Toulouse
VL - 21
IS - 4
SP - 769
EP - 781
AB - If $(M, \omega )$ is a Hodge manifold and $f\in C^\infty (M,\mathbb{R})$ we construct a canonical sequence of functions $f_N$ such that $f_N \rightarrow f$ in the $C^\infty $ topology. These functions have a simple geometric interpretation in terms of the moment map and they are real algebraic, in the sense that they are regular functions when $M$ is regarded as a real algebraic variety. The definition of $f_N$ is inspired by Berezin-Toeplitz quantization and by ideas of Donaldson. The proof follows quickly from known results of Fine, Liu and Ma.
LA - eng
KW - Kähler manifold; Hodge manifold; Bergman metric
UR - http://eudml.org/doc/251007
ER -

References

top
  1. Bochnak (J.), Coste (M.), and Roy (M.-F.).— Real algebraic geometry, volume 36 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin (1998). Translated from the 1987 French original, Revised by the authors. Zbl0633.14016MR1659509
  2. Bordemann (M.), Meinrenken (E.), and Schlichenmaier (M.).— Toeplitz quantization of Kähler manifolds and gl ( N ) , N limits. Comm. Math. Phys., 165(2), p. 281-296 (1994). Zbl0813.58026MR1301849
  3. Bouche (T.).— Convergence de la métrique de Fubini-Study d’un fibré linéaire positif. Ann. Inst. Fourier (Grenoble), 40(1), p. 117-130 (1990). Zbl0685.32015MR1056777
  4. Catlin (D.).— The Bergman kernel and a theorem of Tian. In Analysis and geometry in several complex variables (Katata, 1997), Trends Math., pages 1-23. Birkhäuser Boston, Boston, MA (1999). Zbl0941.32002MR1699887
  5. Charles.— Berezin-Toeplitz operators, a semi-classical approach. Comm. Math. Phys., 239(1-2), p. 1-28 (2003). Zbl1059.47030MR1997113
  6. Donaldson (S. K.).— Some numerical results in complex differential geometry. Pure Appl. Math. Q., 5(2, Special Issue: In honor of Friedrich Hirzebruch. Part 1), p. 571-618 (2009). Zbl1178.32018MR2508897
  7. Fine (J.).— Calabi flow and projective embeddings. J. Differential Geom., 84(3), p. 489-523 (2010). Appendix written by Kefeng Liu & Xiaonan Ma. Zbl1202.32018MR2669363
  8. Hua (L. K.).— Harmonic analysis of functions of several complex variables in the classical domains. Translated from the Russian by Leo Ebner and Adam Korányi. American Mathematical Society, Providence, R.I. (1963). Zbl0507.32025MR171936
  9. Kirwan (F. C.).— Cohomology of quotients in symplectic and algebraic geometry, volume 31 of Mathematical Notes. Princeton University Press, Princeton, NJ (1984). Zbl0553.14020MR766741
  10. Krantz (S. G.).— Function theory of several complex variables. The Wadsworth & Brooks/Cole Mathematics Series. Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA, second edition (1992). Zbl0776.32001MR1162310
  11. Krantz (S. G.).— On a construction of L. Hua for positive reproducing kernels. Michigan Math. J., 59(1), p. 211-230 (2010). Zbl1197.32002MR2654148
  12. Ma (X.) and Marinescu (G.).— Holomorphic Morse inequalities and Bergman kernels, volume 254 of Progress in Mathematics. Birkhäuser Verlag, Basel (2007). Zbl1135.32001MR2339952
  13. Ma (X.) and Marinescu (G.).— Berezin-Toeplitz quantization on Kähler manifolds. arXiv:math.DG/1009.4405 (2010). Preprint. Zbl1251.47030
  14. Schlichenmaier (M.).— Zwei Anwendungen algebraisch-geometrischer Methoden in der theoretischen Physik. 1996. Universität Mannheim. http://math.uni.lu/schlichenmaier/preprints/method en.ps.gz. 
  15. Shiffman (B.) and Zelditch (S.).— Asymptotics of almost holomorphic sections of ample line bundles on symplectic manifolds. J. Reine Angew. Math., 544, p. 181-222 (2002). Zbl1007.53058MR1887895
  16. Shiffman (B.) and Zelditch (S.).— Number variance of random zeros on complex manifolds. Geom. Funct. Anal., 18(4), p. 1422-1475 (2008). Zbl1168.32009MR2465693
  17. Tian (G.).— On a set of polarized Kähler metrics on algebraic manifolds. J. Differential Geom., 32(1), p. 99-130 (1990). Zbl0706.53036MR1064867
  18. Varolin (D.).— Geometry of Hermitian algebraic functions. Quotients of squared norms. Amer. J. Math., 130(2), p. 291-315 (2008). Zbl1146.32008MR2405157
  19. Zelditch (S.).— Szegő kernels and a theorem of Tian. Internat. Math. Res. Notices, 6, p. 317-331 (1998). Zbl0922.58082MR1616718

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.