On the approximation of functions on a Hodge manifold
- [1] Dipartimento di Matematica e Applicazioni, Università degli Studi di Milano Bicocca
Annales de la faculté des sciences de Toulouse Mathématiques (2012)
- Volume: 21, Issue: 4, page 769-781
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topGhigi, Alessandro. "On the approximation of functions on a Hodge manifold." Annales de la faculté des sciences de Toulouse Mathématiques 21.4 (2012): 769-781. <http://eudml.org/doc/251007>.
@article{Ghigi2012,
abstract = {If $(M, \omega )$ is a Hodge manifold and $f\in C^\infty (M,\mathbb\{R\})$ we construct a canonical sequence of functions $f_N$ such that $f_N \rightarrow f$ in the $C^\infty $ topology. These functions have a simple geometric interpretation in terms of the moment map and they are real algebraic, in the sense that they are regular functions when $M$ is regarded as a real algebraic variety. The definition of $f_N$ is inspired by Berezin-Toeplitz quantization and by ideas of Donaldson. The proof follows quickly from known results of Fine, Liu and Ma.},
affiliation = {Dipartimento di Matematica e Applicazioni, Università degli Studi di Milano Bicocca},
author = {Ghigi, Alessandro},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {Kähler manifold; Hodge manifold; Bergman metric},
language = {eng},
month = {10},
number = {4},
pages = {769-781},
publisher = {Université Paul Sabatier, Toulouse},
title = {On the approximation of functions on a Hodge manifold},
url = {http://eudml.org/doc/251007},
volume = {21},
year = {2012},
}
TY - JOUR
AU - Ghigi, Alessandro
TI - On the approximation of functions on a Hodge manifold
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2012/10//
PB - Université Paul Sabatier, Toulouse
VL - 21
IS - 4
SP - 769
EP - 781
AB - If $(M, \omega )$ is a Hodge manifold and $f\in C^\infty (M,\mathbb{R})$ we construct a canonical sequence of functions $f_N$ such that $f_N \rightarrow f$ in the $C^\infty $ topology. These functions have a simple geometric interpretation in terms of the moment map and they are real algebraic, in the sense that they are regular functions when $M$ is regarded as a real algebraic variety. The definition of $f_N$ is inspired by Berezin-Toeplitz quantization and by ideas of Donaldson. The proof follows quickly from known results of Fine, Liu and Ma.
LA - eng
KW - Kähler manifold; Hodge manifold; Bergman metric
UR - http://eudml.org/doc/251007
ER -
References
top- Bochnak (J.), Coste (M.), and Roy (M.-F.).— Real algebraic geometry, volume 36 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin (1998). Translated from the 1987 French original, Revised by the authors. Zbl0633.14016MR1659509
- Bordemann (M.), Meinrenken (E.), and Schlichenmaier (M.).— Toeplitz quantization of Kähler manifolds and , limits. Comm. Math. Phys., 165(2), p. 281-296 (1994). Zbl0813.58026MR1301849
- Bouche (T.).— Convergence de la métrique de Fubini-Study d’un fibré linéaire positif. Ann. Inst. Fourier (Grenoble), 40(1), p. 117-130 (1990). Zbl0685.32015MR1056777
- Catlin (D.).— The Bergman kernel and a theorem of Tian. In Analysis and geometry in several complex variables (Katata, 1997), Trends Math., pages 1-23. Birkhäuser Boston, Boston, MA (1999). Zbl0941.32002MR1699887
- Charles.— Berezin-Toeplitz operators, a semi-classical approach. Comm. Math. Phys., 239(1-2), p. 1-28 (2003). Zbl1059.47030MR1997113
- Donaldson (S. K.).— Some numerical results in complex differential geometry. Pure Appl. Math. Q., 5(2, Special Issue: In honor of Friedrich Hirzebruch. Part 1), p. 571-618 (2009). Zbl1178.32018MR2508897
- Fine (J.).— Calabi flow and projective embeddings. J. Differential Geom., 84(3), p. 489-523 (2010). Appendix written by Kefeng Liu & Xiaonan Ma. Zbl1202.32018MR2669363
- Hua (L. K.).— Harmonic analysis of functions of several complex variables in the classical domains. Translated from the Russian by Leo Ebner and Adam Korányi. American Mathematical Society, Providence, R.I. (1963). Zbl0507.32025MR171936
- Kirwan (F. C.).— Cohomology of quotients in symplectic and algebraic geometry, volume 31 of Mathematical Notes. Princeton University Press, Princeton, NJ (1984). Zbl0553.14020MR766741
- Krantz (S. G.).— Function theory of several complex variables. The Wadsworth & Brooks/Cole Mathematics Series. Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA, second edition (1992). Zbl0776.32001MR1162310
- Krantz (S. G.).— On a construction of L. Hua for positive reproducing kernels. Michigan Math. J., 59(1), p. 211-230 (2010). Zbl1197.32002MR2654148
- Ma (X.) and Marinescu (G.).— Holomorphic Morse inequalities and Bergman kernels, volume 254 of Progress in Mathematics. Birkhäuser Verlag, Basel (2007). Zbl1135.32001MR2339952
- Ma (X.) and Marinescu (G.).— Berezin-Toeplitz quantization on Kähler manifolds. arXiv:math.DG/1009.4405 (2010). Preprint. Zbl1251.47030
- Schlichenmaier (M.).— Zwei Anwendungen algebraisch-geometrischer Methoden in der theoretischen Physik. 1996. Universität Mannheim. http://math.uni.lu/schlichenmaier/preprints/method en.ps.gz.
- Shiffman (B.) and Zelditch (S.).— Asymptotics of almost holomorphic sections of ample line bundles on symplectic manifolds. J. Reine Angew. Math., 544, p. 181-222 (2002). Zbl1007.53058MR1887895
- Shiffman (B.) and Zelditch (S.).— Number variance of random zeros on complex manifolds. Geom. Funct. Anal., 18(4), p. 1422-1475 (2008). Zbl1168.32009MR2465693
- Tian (G.).— On a set of polarized Kähler metrics on algebraic manifolds. J. Differential Geom., 32(1), p. 99-130 (1990). Zbl0706.53036MR1064867
- Varolin (D.).— Geometry of Hermitian algebraic functions. Quotients of squared norms. Amer. J. Math., 130(2), p. 291-315 (2008). Zbl1146.32008MR2405157
- Zelditch (S.).— Szegő kernels and a theorem of Tian. Internat. Math. Res. Notices, 6, p. 317-331 (1998). Zbl0922.58082MR1616718
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.