Approximate roots of a valuation and the Pierce-Birkhoff conjecture
F. Lucas[1]; J. Madden[2]; D. Schaub[1]; M. Spivakovsky[3]
- [1] Département de Mathématiques/CNRS UMR 6093, Université d’Angers, 2, bd Lavoisier, 49045 Angers cédex, France
- [2] Department of Mathematics, Louisiana State University at Baton Rouge, Baton Rouge, LA, USA
- [3] Inst. de Mathématiques de Toulouse/CNRS 5219, Université Paul Sabatier, 118, route de Narbonne, 31062 Toulouse cédex 9, France
Annales de la faculté des sciences de Toulouse Mathématiques (2012)
- Volume: 21, Issue: 2, page 259-342
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topLucas, F., et al. "Approximate roots of a valuation and the Pierce-Birkhoff conjecture." Annales de la faculté des sciences de Toulouse Mathématiques 21.2 (2012): 259-342. <http://eudml.org/doc/251011>.
@article{Lucas2012,
abstract = {In this paper, we construct an object, called a system of approximate roots of a valuation, centered in a regular local ring, which describes the fine structure of the valuation (namely, its valuation ideals and the graded algebra). We apply this construction to valuations associated to a point of the real spectrum of a regular local ring $A$. We give two versions of the construction: the first, much simpler, in a special case (roughly speaking, that of rank 1 valuations), the second – in the case of complete regular local rings and valuations of arbitrary rank.We then describe certain subsets $C\subset \mbox \{Sper\}\ A$ by explicit formulae in terms of approximate roots; we conjecture that these sets satisfy the Connectedness (respectively, Definable Connectedness) conjecture. Establishing this for a certain regular ring $A$ would imply that $A$ is a Pierce-Birkhoff ring (this means that the Pierce-Birkhoff conjecture holds in $A$).Finally, we use these constructions and results to prove the Definable Connectedness conjecture (and hence a fortiori the Pierce-Birkhoff conjecture) in the special case when $\dim \ A=2$.},
affiliation = {Département de Mathématiques/CNRS UMR 6093, Université d’Angers, 2, bd Lavoisier, 49045 Angers cédex, France; Department of Mathematics, Louisiana State University at Baton Rouge, Baton Rouge, LA, USA; Département de Mathématiques/CNRS UMR 6093, Université d’Angers, 2, bd Lavoisier, 49045 Angers cédex, France; Inst. de Mathématiques de Toulouse/CNRS 5219, Université Paul Sabatier, 118, route de Narbonne, 31062 Toulouse cédex 9, France},
author = {Lucas, F., Madden, J., Schaub, D., Spivakovsky, M.},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {valuation; regular local ring; approximate root; Pierce-Birkhoff conjecture; connectedness conjecture},
language = {eng},
month = {4},
number = {2},
pages = {259-342},
publisher = {Université Paul Sabatier, Toulouse},
title = {Approximate roots of a valuation and the Pierce-Birkhoff conjecture},
url = {http://eudml.org/doc/251011},
volume = {21},
year = {2012},
}
TY - JOUR
AU - Lucas, F.
AU - Madden, J.
AU - Schaub, D.
AU - Spivakovsky, M.
TI - Approximate roots of a valuation and the Pierce-Birkhoff conjecture
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2012/4//
PB - Université Paul Sabatier, Toulouse
VL - 21
IS - 2
SP - 259
EP - 342
AB - In this paper, we construct an object, called a system of approximate roots of a valuation, centered in a regular local ring, which describes the fine structure of the valuation (namely, its valuation ideals and the graded algebra). We apply this construction to valuations associated to a point of the real spectrum of a regular local ring $A$. We give two versions of the construction: the first, much simpler, in a special case (roughly speaking, that of rank 1 valuations), the second – in the case of complete regular local rings and valuations of arbitrary rank.We then describe certain subsets $C\subset \mbox {Sper}\ A$ by explicit formulae in terms of approximate roots; we conjecture that these sets satisfy the Connectedness (respectively, Definable Connectedness) conjecture. Establishing this for a certain regular ring $A$ would imply that $A$ is a Pierce-Birkhoff ring (this means that the Pierce-Birkhoff conjecture holds in $A$).Finally, we use these constructions and results to prove the Definable Connectedness conjecture (and hence a fortiori the Pierce-Birkhoff conjecture) in the special case when $\dim \ A=2$.
LA - eng
KW - valuation; regular local ring; approximate root; Pierce-Birkhoff conjecture; connectedness conjecture
UR - http://eudml.org/doc/251011
ER -
References
top- Abhyankar (S.) and Moh (T.T.).— Newton-Puiseux expansion and generalized Tschirnhausen transformation I, Reine Agew. Math. 260, p. 47-83 (1973). Zbl0272.12102MR337955
- Abhyankar (S.) and Moh (T.T.).— Newton-Puiseux expansion and generalized Tschirnhausen transformation II, Reine Agew. Math. 261, p. 29-54 (1973). Zbl0272.12102
- Andradas (C.), Bröcker (L.), Ruiz (J.M.).— Constructible Sets in Real Geometry, Springer (1996). Zbl0873.14044MR1393194
- Alvis (D.), Johnston (B.), Madden (J.J.).— Local structure of the real spectrum of a surface, infinitely near points and separating ideals, Preprint.
- Baer R..— Uber nicht-archimedisch geordnete Körper (Beitrage zur Algebra). Sitz. Ber. Der Heidelberger Akademie, 8 Abhandl (1927).
- Birkhoff (G.) and Pierce (R.).— Lattice-ordered rings, Annales Acad. Brasil Ciênc. 28, p. 41-69 (1956). Zbl0070.26602MR80099
- Bochnak (J.), Coste (M.), Roy (M.-F.).— Géométrie algébrique réelle, Springer-Verlag, Berlin (1987). Zbl0633.14016MR949442
- Cutkosky (S.D.), Teissier (B.).— Semi-groups of valuations on local rings, Michigan Mat. J., Vol. 57, p. 173-193 (2008). MR2492447
- Delzell (C. N.).— On the Pierce-Birkhoff conjecture over ordered fields, Rocky Mountain J. Math. Zbl0715.14047MR1043238
- Fuchs (L.).— Teilweise geordnete algebraische Strukturen, Vandenhoeck and Ruprecht (1966). Zbl0154.00708MR204547
- Herrera Govantes (F. J.), Olalla Acosta (M. A.), Spivakovsky (M.).— Valuations in algebraic field extensions, Journal of Algebra, Vol. 312, N. 2, p. 1033-1074 (2007). Zbl1170.12002MR2333199
- Goldin (R.) and Teissier (B.).— Resolving singularities of plane analytic branches with one toric morphism. Zbl0995.14002
- Herrera Govantes (F. J.), Olalla Acosta (M. A.), Spivakovsky (M.), Teissier (B.).— Extending a valuation centered in a local domain to the formal completion, Preprint.
- Henriksen (M.) and Isbell (J.).— Lattice-ordered rings and function rings, Pacific J. Math. 11, p. 533-566 (1962). Zbl0111.04302MR153709
- Kaplansky (I.).— Maximal fields with valuations I, Duke Math. J., 9, p. 303-321 (1942). Zbl0063.03135MR6161
- Kaplansky (I.).— Maximal fields with valuations II, Duke Math. J., 12, p. 243-248 (1945). Zbl0061.05506MR12276
- Krull (W.).— Allgemeine Bewertungstheorie, J. Reine Angew. Math. 167, p. 160-196 (1932). Zbl0004.09802
- Kuo (T.C.).— Generalized Newton-Puiseux theory and Hensel’s lemma in , , Canadian J. Math., (6) XLI, p. 1101-1116 (1989). Zbl0716.13015MR1018453
- Kuo (T.C.).— A simple algorithm for deciding primes in , , Canadian J. Math., 47 (4), p. 801-816 (1995). Zbl0857.13019MR1346164
- Lejeune-Jalabert (M.).— Thèse d’Etat, Université Paris 7 (1973). MR379895
- Lucas (F.), Madden (J.J.), Schaub (D.) and Spivakovsky (M.).— On connectedness of sets in the real spectra of polynomial rings, Manuscripta Math. 128, p. 505-547 (2009). Zbl1169.14039MR2487439
- Lucas (F.), Schaub (D.) and Spivakovsky (M.).— On the Pierce-Birkhoff conjecture in dimension 3, in preparation.
- MacLane (S.).— A construction for prime ideals as absolute values of an algebraic field, Duke Math. J. 2, p. 492-510 (1936). Zbl62.0096.02MR1545943
- MacLane (S.).— A construction for absolute values in polynomial rings, Transactions of the AMS 40, p. 363-395 (1936). Zbl0015.29202MR1501879
- MacLane (S.) and Schilling (O.F.G.).— Zero-dimensional branches of rank one on algebraic varieties, Ann. of Math. 40, 3 (1939). Zbl0023.29402
- Madden (J.J.).— Pierce-Birkhoff rings. Arch. Math. 53, p. 565-570 (1989). Zbl0691.14012MR1023972
- Madden (J.J.).— preprint.
- Mahé (L.).— On the Pierce-Birkhoff conjecture, Rocky Mountain J. Math. 14, p. 983-985 (1984). Zbl0578.41008MR773148
- Marshall (M.).— Orderings and real places of commutative rings, J. Alg. 140, p. 484-501 (1991). Zbl0752.13002MR1120436
- Marshall (M.).— The Pierce-Birkhoff conjecture for curves, Can. J. Math. 44, p. 1262-1271 (1992). Zbl0793.14039MR1192417
- Matsumura (H.).— Commutative Algebra, Benjamin/Cummings Publishing Co., Reading, Mass. (1970). Zbl0441.13001MR266911
- Prestel (A.).— Lectures on formally real fields, Lecture Notes in Math., SpringerVerlag-Berlin, Heidelberg, New York (1984). Zbl0548.12011MR769847
- Prestel (A.), Delzell (C.N.).— Positive Polynomials, Springer monographs in mathematics (2001). MR1829790
- Priess-Crampe (S.).— Angeordnete Strukturen: Gruppen, Körper, projektive Ebenen, Springer-Verlag-Berlin, Heidelberg, New York (1983). Zbl0558.51012MR704186
- Schwartz (N.).— Real closed spaces, Habilitationsschrift, München (1984). Zbl0586.14016MR773144
- Spivakovsky (M.).— Valuations in function fields of surfaces, Amer. J. Math 112, 1, p. 107-156 (1990). Zbl0716.13003MR1037606
- Spivakovsky (M.).— A solution to Hironaka’s polyhedra game, Arithmetic and Geometry, Vol II, Papers dedicated to I. R. Shafarevich on the occasion of his sixtieth birthday, M. Artin and J. Tate, editors, Birkhäuser, p. 419-432 (1983). Zbl0531.14009MR717618
- Teissier (B.).— Valuations, deformations and toric geometry, Proceedings of the Saskatoon Conference and Workshop on valuation theory, Vol. II, F-V. Kuhlmann, S. Kuhlmann, M. Marshall, editors, Fields Institute Communications, 33, p. 361-459 (2003). Zbl1061.14016MR2018565
- Vaquié (M.).— Famille admise associée à une valuation de , Séminaires et Congrès 10, edited by Jean-Paul Brasselet and Tatsuo Suwa, 2p. 391-428 (2005). MR2145967
- Vaquié (M.).— Extension d’une valuation, Trans. Amer. Math. Soc. 359, no. 7, p. 3439-3481 (2007). Zbl1121.13006MR2299463
- Vaquié (M.).— Algèbre graduée associée à une valuation de , Adv. Stud. Pure Math., 46, Math. Soc. Japan, Tokyo (2007).
- Vaquié (M.).— Famille admissible de valuations et défaut d’une extension, J. Algebra 311, no. 2, p. 859-876 (2007). MR2314739
- Vaquié (M.).— Valuations, Progr. Math., 181, Birkhäuser, Basel p. 539-590 (2000). Zbl1003.13001MR1748635
- Wagner (S.).— On the Pierce-Birkhoff Conjecture for Smooth Affine Surfaces over Real Closed Fields, ArXiv:0810.4800 (2009). MR2675729
- Zariski O., Samuel P..— Commutative Algebra, Vol. II, Springer Verlag. Zbl0322.13001MR389876
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.