Approximate roots of a valuation and the Pierce-Birkhoff conjecture

F. Lucas[1]; J. Madden[2]; D. Schaub[1]; M. Spivakovsky[3]

  • [1] Département de Mathématiques/CNRS UMR 6093, Université d’Angers, 2, bd Lavoisier, 49045 Angers cédex, France
  • [2] Department of Mathematics, Louisiana State University at Baton Rouge, Baton Rouge, LA, USA
  • [3] Inst. de Mathématiques de Toulouse/CNRS 5219, Université Paul Sabatier, 118, route de Narbonne, 31062 Toulouse cédex 9, France

Annales de la faculté des sciences de Toulouse Mathématiques (2012)

  • Volume: 21, Issue: 2, page 259-342
  • ISSN: 0240-2963

Abstract

top
In this paper, we construct an object, called a system of approximate roots of a valuation, centered in a regular local ring, which describes the fine structure of the valuation (namely, its valuation ideals and the graded algebra). We apply this construction to valuations associated to a point of the real spectrum of a regular local ring A . We give two versions of the construction: the first, much simpler, in a special case (roughly speaking, that of rank 1 valuations), the second – in the case of complete regular local rings and valuations of arbitrary rank.We then describe certain subsets C S p e r A by explicit formulae in terms of approximate roots; we conjecture that these sets satisfy the Connectedness (respectively, Definable Connectedness) conjecture. Establishing this for a certain regular ring A would imply that A is a Pierce-Birkhoff ring (this means that the Pierce-Birkhoff conjecture holds in  A ).Finally, we use these constructions and results to prove the Definable Connectedness conjecture (and hence a fortiori the Pierce-Birkhoff conjecture) in the special case when dim A = 2 .

How to cite

top

Lucas, F., et al. "Approximate roots of a valuation and the Pierce-Birkhoff conjecture." Annales de la faculté des sciences de Toulouse Mathématiques 21.2 (2012): 259-342. <http://eudml.org/doc/251011>.

@article{Lucas2012,
abstract = {In this paper, we construct an object, called a system of approximate roots of a valuation, centered in a regular local ring, which describes the fine structure of the valuation (namely, its valuation ideals and the graded algebra). We apply this construction to valuations associated to a point of the real spectrum of a regular local ring $A$. We give two versions of the construction: the first, much simpler, in a special case (roughly speaking, that of rank 1 valuations), the second – in the case of complete regular local rings and valuations of arbitrary rank.We then describe certain subsets $C\subset \mbox \{Sper\}\ A$ by explicit formulae in terms of approximate roots; we conjecture that these sets satisfy the Connectedness (respectively, Definable Connectedness) conjecture. Establishing this for a certain regular ring $A$ would imply that $A$ is a Pierce-Birkhoff ring (this means that the Pierce-Birkhoff conjecture holds in $A$).Finally, we use these constructions and results to prove the Definable Connectedness conjecture (and hence a fortiori the Pierce-Birkhoff conjecture) in the special case when $\dim \ A=2$.},
affiliation = {Département de Mathématiques/CNRS UMR 6093, Université d’Angers, 2, bd Lavoisier, 49045 Angers cédex, France; Department of Mathematics, Louisiana State University at Baton Rouge, Baton Rouge, LA, USA; Département de Mathématiques/CNRS UMR 6093, Université d’Angers, 2, bd Lavoisier, 49045 Angers cédex, France; Inst. de Mathématiques de Toulouse/CNRS 5219, Université Paul Sabatier, 118, route de Narbonne, 31062 Toulouse cédex 9, France},
author = {Lucas, F., Madden, J., Schaub, D., Spivakovsky, M.},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {valuation; regular local ring; approximate root; Pierce-Birkhoff conjecture; connectedness conjecture},
language = {eng},
month = {4},
number = {2},
pages = {259-342},
publisher = {Université Paul Sabatier, Toulouse},
title = {Approximate roots of a valuation and the Pierce-Birkhoff conjecture},
url = {http://eudml.org/doc/251011},
volume = {21},
year = {2012},
}

TY - JOUR
AU - Lucas, F.
AU - Madden, J.
AU - Schaub, D.
AU - Spivakovsky, M.
TI - Approximate roots of a valuation and the Pierce-Birkhoff conjecture
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2012/4//
PB - Université Paul Sabatier, Toulouse
VL - 21
IS - 2
SP - 259
EP - 342
AB - In this paper, we construct an object, called a system of approximate roots of a valuation, centered in a regular local ring, which describes the fine structure of the valuation (namely, its valuation ideals and the graded algebra). We apply this construction to valuations associated to a point of the real spectrum of a regular local ring $A$. We give two versions of the construction: the first, much simpler, in a special case (roughly speaking, that of rank 1 valuations), the second – in the case of complete regular local rings and valuations of arbitrary rank.We then describe certain subsets $C\subset \mbox {Sper}\ A$ by explicit formulae in terms of approximate roots; we conjecture that these sets satisfy the Connectedness (respectively, Definable Connectedness) conjecture. Establishing this for a certain regular ring $A$ would imply that $A$ is a Pierce-Birkhoff ring (this means that the Pierce-Birkhoff conjecture holds in $A$).Finally, we use these constructions and results to prove the Definable Connectedness conjecture (and hence a fortiori the Pierce-Birkhoff conjecture) in the special case when $\dim \ A=2$.
LA - eng
KW - valuation; regular local ring; approximate root; Pierce-Birkhoff conjecture; connectedness conjecture
UR - http://eudml.org/doc/251011
ER -

References

top
  1. Abhyankar (S.) and Moh (T.T.).— Newton-Puiseux expansion and generalized Tschirnhausen transformation I, Reine Agew. Math. 260, p. 47-83 (1973). Zbl0272.12102MR337955
  2. Abhyankar (S.) and Moh (T.T.).— Newton-Puiseux expansion and generalized Tschirnhausen transformation II, Reine Agew. Math. 261, p. 29-54 (1973). Zbl0272.12102
  3. Andradas (C.), Bröcker (L.), Ruiz (J.M.).— Constructible Sets in Real Geometry, Springer (1996). Zbl0873.14044MR1393194
  4. Alvis (D.), Johnston (B.), Madden (J.J.).— Local structure of the real spectrum of a surface, infinitely near points and separating ideals, Preprint. 
  5. Baer R..— Uber nicht-archimedisch geordnete Körper (Beitrage zur Algebra). Sitz. Ber. Der Heidelberger Akademie, 8 Abhandl (1927). 
  6. Birkhoff (G.) and Pierce (R.).— Lattice-ordered rings, Annales Acad. Brasil Ciênc. 28, p. 41-69 (1956). Zbl0070.26602MR80099
  7. Bochnak (J.), Coste (M.), Roy (M.-F.).— Géométrie algébrique réelle, Springer-Verlag, Berlin (1987). Zbl0633.14016MR949442
  8. Cutkosky (S.D.), Teissier (B.).— Semi-groups of valuations on local rings, Michigan Mat. J., Vol. 57, p. 173-193 (2008). MR2492447
  9. Delzell (C. N.).— On the Pierce-Birkhoff conjecture over ordered fields, Rocky Mountain J. Math. Zbl0715.14047MR1043238
  10. Fuchs (L.).— Teilweise geordnete algebraische Strukturen, Vandenhoeck and Ruprecht (1966). Zbl0154.00708MR204547
  11. Herrera Govantes (F. J.), Olalla Acosta (M. A.), Spivakovsky (M.).— Valuations in algebraic field extensions, Journal of Algebra, Vol. 312, N. 2, p. 1033-1074 (2007). Zbl1170.12002MR2333199
  12. Goldin (R.) and Teissier (B.).— Resolving singularities of plane analytic branches with one toric morphism. Zbl0995.14002
  13. Herrera Govantes (F. J.), Olalla Acosta (M. A.), Spivakovsky (M.), Teissier (B.).— Extending a valuation centered in a local domain to the formal completion, Preprint. 
  14. Henriksen (M.) and Isbell (J.).— Lattice-ordered rings and function rings, Pacific J. Math. 11, p. 533-566 (1962). Zbl0111.04302MR153709
  15. Kaplansky (I.).— Maximal fields with valuations I, Duke Math. J., 9, p. 303-321 (1942). Zbl0063.03135MR6161
  16. Kaplansky (I.).— Maximal fields with valuations II, Duke Math. J., 12, p. 243-248 (1945). Zbl0061.05506MR12276
  17. Krull (W.).— Allgemeine Bewertungstheorie, J. Reine Angew. Math. 167, p. 160-196 (1932). Zbl0004.09802
  18. Kuo (T.C.).— Generalized Newton-Puiseux theory and Hensel’s lemma in [ [ x , y ] ] , Canadian J. Math., (6) XLI, p. 1101-1116 (1989). Zbl0716.13015MR1018453
  19. Kuo (T.C.).— A simple algorithm for deciding primes in [ [ x , y ] ] , Canadian J. Math., 47 (4), p. 801-816 (1995). Zbl0857.13019MR1346164
  20. Lejeune-Jalabert (M.).— Thèse d’Etat, Université Paris 7 (1973). MR379895
  21. Lucas (F.), Madden (J.J.), Schaub (D.) and Spivakovsky (M.).— On connectedness of sets in the real spectra of polynomial rings, Manuscripta Math. 128, p. 505-547 (2009). Zbl1169.14039MR2487439
  22. Lucas (F.), Schaub (D.) and Spivakovsky (M.).— On the Pierce-Birkhoff conjecture in dimension 3, in preparation. 
  23. MacLane (S.).— A construction for prime ideals as absolute values of an algebraic field, Duke Math. J. 2, p. 492-510 (1936). Zbl62.0096.02MR1545943
  24. MacLane (S.).— A construction for absolute values in polynomial rings, Transactions of the AMS 40, p. 363-395 (1936). Zbl0015.29202MR1501879
  25. MacLane (S.) and Schilling (O.F.G.).— Zero-dimensional branches of rank one on algebraic varieties, Ann. of Math. 40, 3 (1939). Zbl0023.29402
  26. Madden (J.J.).— Pierce-Birkhoff rings. Arch. Math. 53, p. 565-570 (1989). Zbl0691.14012MR1023972
  27. Madden (J.J.).— preprint. 
  28. Mahé (L.).— On the Pierce-Birkhoff conjecture, Rocky Mountain J. Math. 14, p. 983-985 (1984). Zbl0578.41008MR773148
  29. Marshall (M.).— Orderings and real places of commutative rings, J. Alg. 140, p. 484-501 (1991). Zbl0752.13002MR1120436
  30. Marshall (M.).— The Pierce-Birkhoff conjecture for curves, Can. J. Math. 44, p. 1262-1271 (1992). Zbl0793.14039MR1192417
  31. Matsumura (H.).— Commutative Algebra, Benjamin/Cummings Publishing Co., Reading, Mass. (1970). Zbl0441.13001MR266911
  32. Prestel (A.).— Lectures on formally real fields, Lecture Notes in Math., SpringerVerlag-Berlin, Heidelberg, New York (1984). Zbl0548.12011MR769847
  33. Prestel (A.), Delzell (C.N.).— Positive Polynomials, Springer monographs in mathematics (2001). MR1829790
  34. Priess-Crampe (S.).— Angeordnete Strukturen: Gruppen, Körper, projektive Ebenen, Springer-Verlag-Berlin, Heidelberg, New York (1983). Zbl0558.51012MR704186
  35. Schwartz (N.).— Real closed spaces, Habilitationsschrift, München (1984). Zbl0586.14016MR773144
  36. Spivakovsky (M.).— Valuations in function fields of surfaces, Amer. J. Math 112, 1, p. 107-156 (1990). Zbl0716.13003MR1037606
  37. Spivakovsky (M.).— A solution to Hironaka’s polyhedra game, Arithmetic and Geometry, Vol II, Papers dedicated to I. R. Shafarevich on the occasion of his sixtieth birthday, M. Artin and J. Tate, editors, Birkhäuser, p. 419-432 (1983). Zbl0531.14009MR717618
  38. Teissier (B.).— Valuations, deformations and toric geometry, Proceedings of the Saskatoon Conference and Workshop on valuation theory, Vol. II, F-V. Kuhlmann, S. Kuhlmann, M. Marshall, editors, Fields Institute Communications, 33, p. 361-459 (2003). Zbl1061.14016MR2018565
  39. Vaquié (M.).— Famille admise associée à une valuation de K [ x ] , Séminaires et Congrès 10, edited by Jean-Paul Brasselet and Tatsuo Suwa, 2p. 391-428 (2005). MR2145967
  40. Vaquié (M.).— Extension d’une valuation, Trans. Amer. Math. Soc. 359, no. 7, p. 3439-3481 (2007). Zbl1121.13006MR2299463
  41. Vaquié (M.).— Algèbre graduée associée à une valuation de K [ x ] , Adv. Stud. Pure Math., 46, Math. Soc. Japan, Tokyo (2007). 
  42. Vaquié (M.).— Famille admissible de valuations et défaut d’une extension, J. Algebra 311, no. 2, p. 859-876 (2007). MR2314739
  43. Vaquié (M.).— Valuations, Progr. Math., 181, Birkhäuser, Basel p. 539-590 (2000). Zbl1003.13001MR1748635
  44. Wagner (S.).— On the Pierce-Birkhoff Conjecture for Smooth Affine Surfaces over Real Closed Fields, ArXiv:0810.4800 (2009). MR2675729
  45. Zariski O., Samuel P..— Commutative Algebra, Vol. II, Springer Verlag. Zbl0322.13001MR389876

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.