A proof of Tait’s Conjecture on prime alternating achiral knots
Nicola Ermotti[1]; Cam Van Quach Hongler[1]; Claude Weber[1]
- [1] Section de mathématiques, Université de Genève, CP 64, CH-1211 GENEVE 4, Switerland
 
Annales de la faculté des sciences de Toulouse Mathématiques (2012)
- Volume: 21, Issue: 1, page 25-55
 - ISSN: 0240-2963
 
Access Full Article
topAbstract
topHow to cite
topErmotti, Nicola, Cam Van Quach Hongler, and Weber, Claude. "A proof of Tait’s Conjecture on prime alternating $-$achiral knots." Annales de la faculté des sciences de Toulouse Mathématiques 21.1 (2012): 25-55. <http://eudml.org/doc/251018>.
@article{Ermotti2012,
	abstract = {In this paper we are interested in symmetries of alternating knots, more precisely in those related to achirality. We call the following statement Tait’s Conjecture on alternating $-$achiral knots:Let $K$ be a prime alternating $-$achiral knot. Then there exists a minimal projection $\Pi $ of $K$ in $S^2 \subset S^3$ and an involution $\varphi : S^3 \rightarrow S^3$ such that:1) $\varphi $ reverses the orientation of $S^3$;2) $\varphi (S^2) = S^2$;3) $\varphi (\Pi ) = \Pi $;4) $\varphi $ has two fixed points on $\Pi $ and hence reverses the orientation of $K$.The purpose of this paper is to prove this statement.For the historical background of the conjecture in Peter Tait’s and Mary Haseman’s papers see [16].},
	affiliation = {Section de mathématiques, Université de Genève, CP 64, CH-1211 GENEVE 4, Switerland; Section de mathématiques, Université de Genève, CP 64, CH-1211 GENEVE 4, Switerland; Section de mathématiques, Université de Genève, CP 64, CH-1211 GENEVE 4, Switerland},
	author = {Ermotti, Nicola, Cam Van Quach Hongler, Weber, Claude},
	journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
	keywords = {alternating knot; achiral knot; Tait conjectures},
	language = {eng},
	month = {1},
	number = {1},
	pages = {25-55},
	publisher = {Université Paul Sabatier, Toulouse},
	title = {A proof of Tait’s Conjecture on prime alternating $-$achiral knots},
	url = {http://eudml.org/doc/251018},
	volume = {21},
	year = {2012},
}
TY  - JOUR
AU  - Ermotti, Nicola
AU  - Cam Van Quach Hongler
AU  - Weber, Claude
TI  - A proof of Tait’s Conjecture on prime alternating $-$achiral knots
JO  - Annales de la faculté des sciences de Toulouse Mathématiques
DA  - 2012/1//
PB  - Université Paul Sabatier, Toulouse
VL  - 21
IS  - 1
SP  - 25
EP  - 55
AB  - In this paper we are interested in symmetries of alternating knots, more precisely in those related to achirality. We call the following statement Tait’s Conjecture on alternating $-$achiral knots:Let $K$ be a prime alternating $-$achiral knot. Then there exists a minimal projection $\Pi $ of $K$ in $S^2 \subset S^3$ and an involution $\varphi : S^3 \rightarrow S^3$ such that:1) $\varphi $ reverses the orientation of $S^3$;2) $\varphi (S^2) = S^2$;3) $\varphi (\Pi ) = \Pi $;4) $\varphi $ has two fixed points on $\Pi $ and hence reverses the orientation of $K$.The purpose of this paper is to prove this statement.For the historical background of the conjecture in Peter Tait’s and Mary Haseman’s papers see [16].
LA  - eng
KW  - alternating knot; achiral knot; Tait conjectures
UR  - http://eudml.org/doc/251018
ER  - 
References
top- Bleiler (S.).— “A note on unknotting number" Math. Proc. Cambridge Phil. Soc. 96, p. 469-471 (1984). Zbl0556.57004MR757839
 - Bonahon (F.) and Siebenmann (L.).— “New geometric splittings of classical knots, and the classification and symmetries of arborescent knots". See on Internet http://www-bcf.usc.edu/ fbonahon/Research/Preprints/
 - Brouwer (L.).— “Über die periodischen Transformationen der Kugel" Math. Annalen 20, p. 39-41 (1920). Zbl47.0527.01
 - Calvo (J.).— “Knot enumeration through flypes and twisted splices" Jour. Knot Theory and its Ramif. 6, p. 785-798 (1997). Zbl0920.57004MR1483786
 - Constantin (A.) and Kolev (B.).— “The theorem of Kerekjarto on periodic homeomorphisms of the disc and the sphere" L’Ens. math. (2) 40, p. 193-204 (1994). Zbl0852.57012MR1309126
 - Conway (J.).— “An enumeration of knots and links, and some of their algebraic properties" in Computational Problems in Abstract Algebra, Pergamon Press, Oxford and New York, p. 329-358 (1970). Zbl0202.54703MR258014
 - Dasbach (O.) and Hougardy (S.).— “A conjecture of Kauffman on amphicheiral alternating knots" Jour. Knot Theory and its Ramif. 5, p. 629-635 (1996). Zbl0890.57011MR1414091
 - Ermotti (N.), Van Quach Hongler (C.) and Weber (C.).— On the achiral alternating knots (in preparation).
 - Haseman (M.).— “On knots, with a census of the amphicheirals with twelve crossings" Trans. Roy. Soc. Edinburgh 52, p. 235-255 (1918).
 - Haseman (M.).— “Amphicheiral knots" Trans. Roy. Soc. Edinburgh 52, p. 597-602 (1920).
 - Kauffman (L.) and Jablan (S.).— “A theorem on amphicheiral alternating knots" Arxiv 1005.3612v1 Math GT 20 May (2010).
 - von Kerékjártó (B.).— “Über die periodischen Transformationen der Kreisscheibe und der Kugelfläche" Math. Ann. 80, p. 36-38 (1920). Zbl47.0526.05
 - Menasco (W.).— “Closed incompressible surfaces in alternating knot and link complements" Topology 23, p.37-44 (1984). Zbl0525.57003MR721450
 - Menasco (W.) and Thistlethwaite (N.).— “The classification of alternating links" Annals of Mathematics 138, p.113-171 (1993). Zbl0809.57002MR1230928
 - Nakanishi (Y.).— “Unknotting numbers and knot diagrams with the minimum crossings" Math. Sem. Notes Kobe Univ. 11, p. 257-258 (1983). Zbl0549.57003MR749196
 - Van Quach Hongler (C.) and Weber (C.).— “Amphicheirals according to Tait and Haseman" Jour. Knot Theory and its Ramif. 17, p. 1387-1400 (2008). Zbl1155.57010MR2469208
 - Van Quach Hongler (C.) and Weber (C.).— “Link projections and flypes" Acta Math. Vietnam. 33, p. 433-457 (2008). Zbl1201.57004MR2501852
 - Tait (P.).— “On Knots I " Trans. Roy. Soc. Edinburgh 28, p. 145-190 (1876). Reprinted in Tait’s Scientific Papers p. 273-317.
 - Tait (P.).— “On Knots II " Trans. Roy. Soc. Edinburgh 32, p. 327-342 (1884). Reprinted in Tait’s Scientific Papers p. 318-334.
 - Tait (P.).— “On Knots III " Trans. Roy. Soc. Edinburgh 32, p. 493-506 (1885). Reprinted in Tait’s Scientific Papers p. 335-347.
 - Tutte (W.).— “A census of planar maps" Canad. J. Math. 15, p. 249-271 (1963). Zbl0115.17305MR146823
 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.