A proof of Tait’s Conjecture on prime alternating - achiral knots

Nicola Ermotti[1]; Cam Van Quach Hongler[1]; Claude Weber[1]

  • [1] Section de mathématiques, Université de Genève, CP 64, CH-1211 GENEVE 4, Switerland

Annales de la faculté des sciences de Toulouse Mathématiques (2012)

  • Volume: 21, Issue: 1, page 25-55
  • ISSN: 0240-2963

Abstract

top
In this paper we are interested in symmetries of alternating knots, more precisely in those related to achirality. We call the following statement Tait’s Conjecture on alternating - achiral knots:Let K be a prime alternating - achiral knot. Then there exists a minimal projection Π of K in S 2 S 3 and an involution ϕ : S 3 S 3 such that:1) ϕ reverses the orientation of S 3 ;2) ϕ ( S 2 ) = S 2 ;3) ϕ ( Π ) = Π ;4) ϕ has two fixed points on Π and hence reverses the orientation of K .The purpose of this paper is to prove this statement.For the historical background of the conjecture in Peter Tait’s and Mary Haseman’s papers see [16].

How to cite

top

Ermotti, Nicola, Cam Van Quach Hongler, and Weber, Claude. "A proof of Tait’s Conjecture on prime alternating $-$achiral knots." Annales de la faculté des sciences de Toulouse Mathématiques 21.1 (2012): 25-55. <http://eudml.org/doc/251018>.

@article{Ermotti2012,
abstract = {In this paper we are interested in symmetries of alternating knots, more precisely in those related to achirality. We call the following statement Tait’s Conjecture on alternating $-$achiral knots:Let $K$ be a prime alternating $-$achiral knot. Then there exists a minimal projection $\Pi $ of $K$ in $S^2 \subset S^3$ and an involution $\varphi : S^3 \rightarrow S^3$ such that:1) $\varphi $ reverses the orientation of $S^3$;2) $\varphi (S^2) = S^2$;3) $\varphi (\Pi ) = \Pi $;4) $\varphi $ has two fixed points on $\Pi $ and hence reverses the orientation of $K$.The purpose of this paper is to prove this statement.For the historical background of the conjecture in Peter Tait’s and Mary Haseman’s papers see [16].},
affiliation = {Section de mathématiques, Université de Genève, CP 64, CH-1211 GENEVE 4, Switerland; Section de mathématiques, Université de Genève, CP 64, CH-1211 GENEVE 4, Switerland; Section de mathématiques, Université de Genève, CP 64, CH-1211 GENEVE 4, Switerland},
author = {Ermotti, Nicola, Cam Van Quach Hongler, Weber, Claude},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {alternating knot; achiral knot; Tait conjectures},
language = {eng},
month = {1},
number = {1},
pages = {25-55},
publisher = {Université Paul Sabatier, Toulouse},
title = {A proof of Tait’s Conjecture on prime alternating $-$achiral knots},
url = {http://eudml.org/doc/251018},
volume = {21},
year = {2012},
}

TY - JOUR
AU - Ermotti, Nicola
AU - Cam Van Quach Hongler
AU - Weber, Claude
TI - A proof of Tait’s Conjecture on prime alternating $-$achiral knots
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2012/1//
PB - Université Paul Sabatier, Toulouse
VL - 21
IS - 1
SP - 25
EP - 55
AB - In this paper we are interested in symmetries of alternating knots, more precisely in those related to achirality. We call the following statement Tait’s Conjecture on alternating $-$achiral knots:Let $K$ be a prime alternating $-$achiral knot. Then there exists a minimal projection $\Pi $ of $K$ in $S^2 \subset S^3$ and an involution $\varphi : S^3 \rightarrow S^3$ such that:1) $\varphi $ reverses the orientation of $S^3$;2) $\varphi (S^2) = S^2$;3) $\varphi (\Pi ) = \Pi $;4) $\varphi $ has two fixed points on $\Pi $ and hence reverses the orientation of $K$.The purpose of this paper is to prove this statement.For the historical background of the conjecture in Peter Tait’s and Mary Haseman’s papers see [16].
LA - eng
KW - alternating knot; achiral knot; Tait conjectures
UR - http://eudml.org/doc/251018
ER -

References

top
  1. Bleiler (S.).— “A note on unknotting number" Math. Proc. Cambridge Phil. Soc. 96, p. 469-471 (1984). Zbl0556.57004MR757839
  2. Bonahon (F.) and Siebenmann (L.).— “New geometric splittings of classical knots, and the classification and symmetries of arborescent knots". See on Internet http://www-bcf.usc.edu/ fbonahon/Research/Preprints/ 
  3. Brouwer (L.).— “Über die periodischen Transformationen der Kugel" Math. Annalen 20, p. 39-41 (1920). Zbl47.0527.01
  4. Calvo (J.).— “Knot enumeration through flypes and twisted splices" Jour. Knot Theory and its Ramif. 6, p. 785-798 (1997). Zbl0920.57004MR1483786
  5. Constantin (A.) and Kolev (B.).— “The theorem of Kerekjarto on periodic homeomorphisms of the disc and the sphere" L’Ens. math. (2) 40, p. 193-204 (1994). Zbl0852.57012MR1309126
  6. Conway (J.).— “An enumeration of knots and links, and some of their algebraic properties" in Computational Problems in Abstract Algebra, Pergamon Press, Oxford and New York, p. 329-358 (1970). Zbl0202.54703MR258014
  7. Dasbach (O.) and Hougardy (S.).— “A conjecture of Kauffman on amphicheiral alternating knots" Jour. Knot Theory and its Ramif. 5, p. 629-635 (1996). Zbl0890.57011MR1414091
  8. Ermotti (N.), Van Quach Hongler (C.) and Weber (C.).— On the + achiral alternating knots (in preparation). 
  9. Haseman (M.).— “On knots, with a census of the amphicheirals with twelve crossings" Trans. Roy. Soc. Edinburgh 52, p. 235-255 (1918). 
  10. Haseman (M.).— “Amphicheiral knots" Trans. Roy. Soc. Edinburgh 52, p. 597-602 (1920). 
  11. Kauffman (L.) and Jablan (S.).— “A theorem on amphicheiral alternating knots" Arxiv 1005.3612v1 Math GT 20 May (2010). 
  12. von Kerékjártó (B.).— “Über die periodischen Transformationen der Kreisscheibe und der Kugelfläche" Math. Ann. 80, p. 36-38 (1920). Zbl47.0526.05
  13. Menasco (W.).— “Closed incompressible surfaces in alternating knot and link complements" Topology 23, p.37-44 (1984). Zbl0525.57003MR721450
  14. Menasco (W.) and Thistlethwaite (N.).— “The classification of alternating links" Annals of Mathematics 138, p.113-171 (1993). Zbl0809.57002MR1230928
  15. Nakanishi (Y.).— “Unknotting numbers and knot diagrams with the minimum crossings" Math. Sem. Notes Kobe Univ. 11, p. 257-258 (1983). Zbl0549.57003MR749196
  16. Van Quach Hongler (C.) and Weber (C.).— “Amphicheirals according to Tait and Haseman" Jour. Knot Theory and its Ramif. 17, p. 1387-1400 (2008). Zbl1155.57010MR2469208
  17. Van Quach Hongler (C.) and Weber (C.).— “Link projections and flypes" Acta Math. Vietnam. 33, p. 433-457 (2008). Zbl1201.57004MR2501852
  18. Tait (P.).— “On Knots I " Trans. Roy. Soc. Edinburgh 28, p. 145-190 (1876). Reprinted in Tait’s Scientific Papers p. 273-317. 
  19. Tait (P.).— “On Knots II " Trans. Roy. Soc. Edinburgh 32, p. 327-342 (1884). Reprinted in Tait’s Scientific Papers p. 318-334. 
  20. Tait (P.).— “On Knots III " Trans. Roy. Soc. Edinburgh 32, p. 493-506 (1885). Reprinted in Tait’s Scientific Papers p. 335-347. 
  21. Tutte (W.).— “A census of planar maps" Canad. J. Math. 15, p. 249-271 (1963). Zbl0115.17305MR146823

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.