Existence of quasilinear relaxation shock profiles in systems with characteristic velocities

Guy Métivier[1]; Benjamin Texier[2]; Kevin Zumbrun[3]

  • [1] IMB, Université de Bordeaux, CNRS, IMB, 33405 Talence Cedex, France
  • [2] Université Paris Diderot (Paris 7), Institut de Mathématiques de Jussieu, UMR CNRS 7586
  • [3] Indiana University, Bloomington, IN 47405

Annales de la faculté des sciences de Toulouse Mathématiques (2012)

  • Volume: 21, Issue: 1, page 1-23
  • ISSN: 0240-2963

Abstract

top
We revisit the existence problem for shock profiles in quasilinear relaxation systems in the case that the velocity is a characteristic mode, implying that the profile ODE is degenerate. Our result states existence, with sharp rates of decay and distance from the Chapman–Enskog approximation, of small-amplitude quasilinear relaxation shocks. Our method of analysis follows the general approach used by Métivier and Zumbrun in the semilinear case, based on Chapman–Enskog expansion and the macro–micro decomposition of Liu and Yu. In the quasilinear case, however, in order to close the analysis, we find it necessary to apply a parameter-dependent Nash-Moser iteration due to Texier and Zumbrun, whereas, in the semilinear case, a simple contraction-mapping argument sufficed.

How to cite

top

Métivier, Guy, Texier, Benjamin, and Zumbrun, Kevin. "Existence of quasilinear relaxation shock profiles in systems with characteristic velocities." Annales de la faculté des sciences de Toulouse Mathématiques 21.1 (2012): 1-23. <http://eudml.org/doc/251020>.

@article{Métivier2012,
abstract = {We revisit the existence problem for shock profiles in quasilinear relaxation systems in the case that the velocity is a characteristic mode, implying that the profile ODE is degenerate. Our result states existence, with sharp rates of decay and distance from the Chapman–Enskog approximation, of small-amplitude quasilinear relaxation shocks. Our method of analysis follows the general approach used by Métivier and Zumbrun in the semilinear case, based on Chapman–Enskog expansion and the macro–micro decomposition of Liu and Yu. In the quasilinear case, however, in order to close the analysis, we find it necessary to apply a parameter-dependent Nash-Moser iteration due to Texier and Zumbrun, whereas, in the semilinear case, a simple contraction-mapping argument sufficed.},
affiliation = {IMB, Université de Bordeaux, CNRS, IMB, 33405 Talence Cedex, France; Université Paris Diderot (Paris 7), Institut de Mathématiques de Jussieu, UMR CNRS 7586; Indiana University, Bloomington, IN 47405},
author = {Métivier, Guy, Texier, Benjamin, Zumbrun, Kevin},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {sharp rates of decay; Chapman-Enskog approximation; small-amplitude; relaxation shocks; Nash-Moser iteration},
language = {eng},
month = {1},
number = {1},
pages = {1-23},
publisher = {Université Paul Sabatier, Toulouse},
title = {Existence of quasilinear relaxation shock profiles in systems with characteristic velocities},
url = {http://eudml.org/doc/251020},
volume = {21},
year = {2012},
}

TY - JOUR
AU - Métivier, Guy
AU - Texier, Benjamin
AU - Zumbrun, Kevin
TI - Existence of quasilinear relaxation shock profiles in systems with characteristic velocities
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2012/1//
PB - Université Paul Sabatier, Toulouse
VL - 21
IS - 1
SP - 1
EP - 23
AB - We revisit the existence problem for shock profiles in quasilinear relaxation systems in the case that the velocity is a characteristic mode, implying that the profile ODE is degenerate. Our result states existence, with sharp rates of decay and distance from the Chapman–Enskog approximation, of small-amplitude quasilinear relaxation shocks. Our method of analysis follows the general approach used by Métivier and Zumbrun in the semilinear case, based on Chapman–Enskog expansion and the macro–micro decomposition of Liu and Yu. In the quasilinear case, however, in order to close the analysis, we find it necessary to apply a parameter-dependent Nash-Moser iteration due to Texier and Zumbrun, whereas, in the semilinear case, a simple contraction-mapping argument sufficed.
LA - eng
KW - sharp rates of decay; Chapman-Enskog approximation; small-amplitude; relaxation shocks; Nash-Moser iteration
UR - http://eudml.org/doc/251020
ER -

References

top
  1. Alinhac (S.) and Gérard (P.).— Pseudo-differential operators and the Nash-Moser theorem. Graduate Studies in Mathematics, 82. American Mathematical Society, Providence, RI. viii+168 pp (2007). Zbl1121.47033MR2304160
  2. Caflisch (R.) and Nicolaenko (B.).— Shock profile solutions of the Boltzmann equation, Comm. Math. Phys. 86, no. 2, p. 161-194 (1982). Zbl0544.76063MR676183
  3. Degond (P.), Lemou (M.).— On the viscosity and thermal conduction of fluids with multivalued internal energy. Eur. J. Mech. B Fluids 20, no. 2, p. 303-327 (2001). Zbl1011.76008MR1827806
  4. Dressel (A.) and Yong (W.-A.).— Existence of traveling-wave solutions for hyperbolic systems of balance laws, Arch. Ration. Mech. Anal. 182, no. 1, p. 49-75 (2006). Zbl1102.35067MR2247952
  5. Guès (O.), Métivier (G.), Williams (M.) and Zumbrun (K.).— Navier-Stokes regularization of multidimensional Euler shocks, Ann. Sci. École Norm. Sup. (4) 39, no. 1, p. 75-175 (2006). Zbl1173.35082MR2224659
  6. Hamilton (R. S.).— The inverse function theorem of Nash and Moser. Bull. Amer. Math. Soc. (N.S.) 7, no. 1, p. 65-222 (1982). Zbl0499.58003MR656198
  7. Jin (S.) and Xin (Z.).— The relaxation schemes for systems of conservation laws in arbitrary space dimensions, Comm. Pure Appl. Math. 48, no. 3, p. 235-276 (1995). Zbl0826.65078MR1322811
  8. Kawashima (S.).— Systems of a hyperbolic-parabolic composite type, with applications to the equations of magnetohydrodynamics, thesis, Kyoto University (1983). 
  9. Liu (T.-P.) and Yu (S.-H.).— Boltzmann equation: micro-macro decompositions and positivity of shock profiles, Comm. Math. Phys. 246, no. 1, p. 133-179 (2004). Zbl1092.82034MR2044894
  10. Majda (A.) and Pego (R.).— Stable viscosity matrices for systems of conservation laws, J. Diff. Eqs. 56 229-262, (1985). Zbl0512.76067MR774165
  11. Mascia (C.) and Zumbrun (K.).— Pointwise Green’s function bounds and stability of relaxation shocks. Indiana Univ. Math. J. 51, no. 4, p. 773-904 (2002). Zbl1036.35135MR1947862
  12. Mascia (C.) and Zumbrun (K.).— Stability of large-amplitude shock profiles of general relaxation systems, SIAM J. Math. Anal. 37, no. 3, p. 889-913 (2005). Zbl1100.35069MR2191781
  13. Mascia (C.) and Zumbrun (K.).— Spectral stability of weak relaxation shock profiles, Comm. Partial Differential Equations 34, no. 1-3, p. 119-136 (2009). Zbl1171.35076MR2512856
  14. Mascia (C.) and Zumbrun (K.).— Stability of small-amplitude shock profiles of symmetric hyperbolic-parabolic systems, Comm. Pure Appl. Math. 57, no.7, p. 841-876 (2004). Zbl1060.35111MR2044067
  15. Mascia (C.) and Zumbrun (K.).— Pointwise Green function bounds for shock profiles of systems with real viscosity, Arch. Rational Mech. Anal. 169, no.3, p. 177-263 (2003). Zbl1035.35074MR2004135
  16. Métivier (G.) and Zumbrun (K.).— Viscous Boundary Layers for Noncharacteristic Nonlinear Hyperbolic Problems, Memoir of the American Mathematical Society, p. 826 (2005). Zbl1074.35066
  17. Métivier (G.) and Zumbrun (K.).— Existence of semilinear relaxation shocks, Journal de Mathématiques Pures et Appliquées, Volume 92, Issue 3, September, p. 209-231, (2009). Zbl1180.35358MR2555177
  18. Métivier (G.) and Zumbrun (K.).— Existence and sharp localization in velocity of small-amplitude Boltzmann shocks, Kinetic and Related Models, volume 2, number 4, December, p. 667-705 (2009). Zbl1197.76116MR2556717
  19. Natalini (R.).— Recent mathematical results on hyperbolic relaxation problems, TMR Lecture Notes (1998). Analysis of systems of conservation laws (Aachen, 1997), p. 128-198, Chapman & Hall/CRC Monogr. Surv. Pure Appl. Math., 99, Chapman & Hall/CRC, Boca Raton, FL (1999). Zbl0940.35127MR1679940
  20. Pego (R.L.).— Stable viscosities and shock profiles for systems of conservation laws, Trans. Amer. Math. Soc. 282, p. 749-763 (1984). Zbl0512.76068MR732117
  21. Platkowski (T.) and Illner (R.).— Discrete velocity models of the Boltzmann equation: a survey on the mathematical aspects of the theory, SIAM Rev. 30, no. 2, p. 213-255 (1988). Zbl0668.76087MR941111
  22. Plaza (R.) and Zumbrun (K.).— An Evans function approach to spectral stability of small-amplitude shock profiles, Discrete Contin. Dyn. Syst. 10, p. 885-924 (2004). Zbl1058.35164MR2073940
  23. Texier (B.) and Zumbrun (K.).— Nash-Moser iteration and singular perturbations, Ann. Inst. H. Poincaré Anal. Non Linéaire 28, no. 4, p. 499-527 (2011). Zbl1237.47066MR2823882
  24. Saint-Raymond (X.).— A simple Nash-Moser implicit function theorem. Enseign. Math. (2) 35, no. 3-4, p. 217-226 (1989). Zbl0702.58011MR1039945
  25. Yong (W.-A.).— Basic structures of hyperbolic relaxation systems, Proc. Roy. Soc. Edinburgh Sect. A 132, no. 5, p. 1259-1274 (2002). Zbl1138.35370MR1938722
  26. Yong (W.-A.) and Zumbrun (K.).— Existence of relaxation shock profiles for hyperbolic conservation laws, SIAM J. Appl. Math. 60, no.5, p. 1565-1575 (2000). Zbl0959.35116MR1761762
  27. Zumbrun (K.).— Multidimensional stability of planar viscous shock waves, “Advances in the theory of shock waves”, p. 307-516, Progr. Nonlinear Differential Equations Appl., 47, Birkhäuser Boston, Boston, MA (2001). Zbl0989.35089MR1842778

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.