Navier–Stokes regularization of multidimensional Euler shocks

C. M. I. Olivier Guès; Guy Métivier; Mark Williams; Kevin Zumbrun

Annales scientifiques de l'École Normale Supérieure (2006)

  • Volume: 39, Issue: 1, page 75-175
  • ISSN: 0012-9593

How to cite

top

Guès, C. M. I. Olivier, et al. "Navier–Stokes regularization of multidimensional Euler shocks." Annales scientifiques de l'École Normale Supérieure 39.1 (2006): 75-175. <http://eudml.org/doc/82683>.

@article{Guès2006,
author = {Guès, C. M. I. Olivier, Métivier, Guy, Williams, Mark, Zumbrun, Kevin},
journal = {Annales scientifiques de l'École Normale Supérieure},
language = {eng},
number = {1},
pages = {75-175},
publisher = {Elsevier},
title = {Navier–Stokes regularization of multidimensional Euler shocks},
url = {http://eudml.org/doc/82683},
volume = {39},
year = {2006},
}

TY - JOUR
AU - Guès, C. M. I. Olivier
AU - Métivier, Guy
AU - Williams, Mark
AU - Zumbrun, Kevin
TI - Navier–Stokes regularization of multidimensional Euler shocks
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2006
PB - Elsevier
VL - 39
IS - 1
SP - 75
EP - 175
LA - eng
UR - http://eudml.org/doc/82683
ER -

References

top
  1. [1] Alinhac S., Existence d'ondes de raréfaction pour des sytèmes quasi-linéaires hyperboliques multidimensionnels, Comm. Partial Differential Equations14 (1989) 173-230. Zbl0692.35063MR976971
  2. [2] Bony J.M., Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. École Norm. Sup. Paris14 (1981) 209-246. Zbl0495.35024MR631751
  3. [3] Coppel W.A., Stability and Asymptotic Behavior of Differential Equations, D.C. Heath, Boston, 1965. Zbl0154.09301MR190463
  4. [4] Chazarain J., Piriou A., Introduction to the Theory of Linear Partial Differential Equations, North-Holland, Amsterdam, 1982. Zbl0487.35002MR678605
  5. [5] Erpenbeck J.J., Stability of step shocks, Phys. Fluids5 (1962) 1181-1187. Zbl0111.38403MR155515
  6. [6] Freistühler H., Szmolyan P., Spectral stability of small shock waves, Arch. Rat. Mech. Anal.164 (2002) 287-309. Zbl1018.35010MR1933630
  7. [7] Gardner R., Zumbrun K., The gap lemma and geometric criteria instability of viscous shock profiles, CPAM51 (1998) 797-855. Zbl0933.35136MR1617251
  8. [8] Gilbarg D., The existence and limit behavior of the one-dimensional shock layer, Amer. J. Math.73 (1951) 256-274. Zbl0044.21504MR44315
  9. [9] Guès O., Développements asymptotiques de solutions exactes de systèmes hyperboliques quasilinéaires, Asymp. Anal.6 (1993) 241-270. Zbl0780.35017MR1201195
  10. [10] Guès O., Métivier G., Williams M., Zumbrun K., Multidimensional viscous shocks I: degenerate symmetrizers and long time stability, J. Amer. Math. Soc.18 (2005) 61-120. Zbl1058.35163MR2114817
  11. [11] Guès O., Métivier G., Williams M., Zumbrun K., Multidimensional viscous shocks II: the small viscosity problem, Comm. Pure Appl. Math.57 (2004) 141-218. Zbl1073.35162MR2012648
  12. [12] Guès O., Métivier G., Williams M., Zumbrun K., Existence and stability of multidimensional shock fronts in the vanishing viscosity limit, Arch. Rat. Mech. Anal.175 (2004) 151-244. Zbl1072.35122MR2118476
  13. [13] Guès O., Métivier G., Williams M., Zumbrun K., Stability of noncharacteristic boundary layers for the compressible Navier–Stokes and MHD equations, in preparation. Zbl1217.35136
  14. [14] Guès O., Métivier G., Williams M., Zumbrun K., Viscous boundary value problems for symmetric systems with variable multiplicities, in preparation. Zbl1138.35052
  15. [15] Goodman J., Nonlinear asymptotic stability of viscous shock profiles for conservation laws, Arch. Rat. Mech. Anal.95 (1986) 325-344. Zbl0631.35058MR853782
  16. [16] Goodman J., Xin Z., Viscous limits for piecewise smooth solutions to systems of conservation laws, Arch. Rat. Mech. Anal.121 (1992) 235-265. Zbl0792.35115MR1188982
  17. [17] Guès O., Williams M., Curved shocks as viscous limits: a boundary problem approach, Indiana Univ. Math. J.51 (2002) 421-450. Zbl1046.35072MR1909296
  18. [18] Hörmander L., The Analysis of Linear Partial Differential Operators I, Springer, Berlin, 1983. Zbl1028.35001
  19. [19] Kreiss H.-O., Initial boundary value problems for hyperbolic systems, Comm. Pure Appl. Math.23 (1970) 277-298. Zbl0193.06902MR437941
  20. [20] Kato T., Perturbation Theory for Linear Operators, Springer, Berlin, 1985. Zbl0148.12601MR1335452
  21. [21] Kawashima S., Systems of hyperbolic-parabolic type with applications to the equations of magnetohydrodynamics, PhD thesis, Kyoto University, 1983. 
  22. [22] Kawashima S., Shizuta Y., Systems of equations of hyperbolic–parabolic type with applications to the discrete Boltzmann equation, Hokkaido Math. J.14 (1985) 249-275. Zbl0587.35046MR798756
  23. [23] Kawashima S., Shizuta Y., On the normal form of the symmetric hyperbolic–parabolic systems associated with the conservation laws, Tohoku Math. J. (1988) 449-464. Zbl0699.35171MR957056
  24. [24] Mascia C., Zumbrun K., Pointwise Green function bounds for shock profiles with degenerate viscosity, Arch. Rat. Mech. Anal.169 (2003) 177-263. Zbl1035.35074MR2004135
  25. [25] Majda A., Pego R., Stable viscosity matrices for systems of conservation laws, J. Differential Equations56 (1985) 229-262. Zbl0512.76067MR774165
  26. [26] Majda A., The Stability of Multidimensional Shock Fronts, Mem. Amer. Math. Soc., vol. 275, AMS, Providence, RI, 1983. Zbl0506.76075MR683422
  27. [27] Majda A., The Existence of Multidimensional Shock Fronts, Mem. Amer. Math. Soc., vol. 281, AMS, Providence, RI, 1983. Zbl0517.76068MR699241
  28. [28] Métivier G., Stability of Multidimensional Shocks, in: Advances in the Theory of Shock Waves, Progress in Nonlinear PDE, vol. 47, Birkhäuser, Boston, 2001. Zbl1017.35075MR1842775
  29. [29] Métivier G., The block structure condition for symmetric hyperbolic systems, Bull. Lond. Math. Soc.32 (2000) 689-702. Zbl1073.35525MR1781581
  30. [30] Métivier G., Zumbrun K., Large viscous boundary layers for noncharacteristic nonlinear hyperbolic problems, Mem. Amer. Math. Soc.175 (826) (2005), vi+107 p. Zbl1074.35066MR2130346
  31. [31] Métivier G., Zumbrun K., Symmetrizers and continuity of stable subspaces for parabolic–hyperbolic boundary value problems, Disc. Cont. Dyn. Syst.11 (2004) 205-220. Zbl1102.35332MR2073953
  32. [32] Métivier G., Zumbrun K., Hyperbolic boundary value problems for symmetric systems with variable multiplicities, J. Differential Equations211 (2005) 61-134. Zbl1073.35155MR2121110
  33. [33] Pego R., Stable viscosities and shock profiles for systems of conservation laws, Trans. Amer. Math. Soc.282 (1984) 749-763. Zbl0512.76068MR732117
  34. [34] Plaza R., Zumbrun K., An Evans function approach to spectral stability of small-amplitude shock profiles, J. Disc. Cont. Dyn. Syst.10 (2004) 885-924. Zbl1058.35164MR2073940
  35. [35] Steenrod N., The Topology of Fibre Bundles, Princeton University Press, Princeton, NJ, 1951. Zbl0054.07103MR39258
  36. [36] Zumbrun K., Multidimensional stability of planar viscous shock waves, in: Advances in the Theory of Shock Waves, Progress in Nonlinear PDE, vol. 47, Birkhäuser, Boston, 2001, pp. 304-516. Zbl0989.35089MR1842778
  37. [37] Zumbrun K., Stability of large-amplitude shock waves of compressible Navier–Stokes equations, with an appendix by H.K. Jenssen and G. Lyng, in: Handbook of Mathematical Fluid Dynamics, vol. 3, North-Holland, Amsterdam, 2004, pp. 311-533. Zbl1222.35156MR2099037
  38. [38] Zumbrun K., Planar stability criteria for viscous shock waves of systems with real viscosity, in: Hyperbolic Systems of Balance Laws, Springer Lecture Notes, 2006, in press. 
  39. [39] Zumbrun K., Serre D., Viscous and inviscid stability of multidimensional planar shock fronts, Indiana Univ. Math. J.48 (1999) 937-992. Zbl0944.76027MR1736972

Citations in EuDML Documents

top
  1. Ya-Guang Wang, Mark Williams, The inviscid limit and stability of characteristic boundary layers for the compressible Navier-Stokes equations with Navier-friction boundary conditions
  2. Guy Métivier, Benjamin Texier, Kevin Zumbrun, Existence of quasilinear relaxation shock profiles in systems with characteristic velocities
  3. Guy Métivier, Stability of Noncharacteristic Viscous Boundary Layers
  4. Franck Sueur, Vorticity internal transition layers for the Navier-Stokes equations

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.