Local-global compatibility for , I
Thomas Barnet-Lamb[1]; Toby Gee[2]; David Geraghty[3]; Richard Taylor[4]
- [1] Department of Mathematics, Brandeis University
- [2] Department of Mathematics, Northwestern University
- [3] Princeton University and Institute for Advanced Study
- [4] Department of Mathematics, Harvard University
Annales de la faculté des sciences de Toulouse Mathématiques (2012)
- Volume: 21, Issue: 1, page 57-92
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topBarnet-Lamb, Thomas, et al. "Local-global compatibility for $l=p$, I." Annales de la faculté des sciences de Toulouse Mathématiques 21.1 (2012): 57-92. <http://eudml.org/doc/251021>.
@article{Barnet2012,
abstract = {We prove the compatibility of the local and global Langlands correspondences at places dividing $l$ for the $l$-adic Galois representations associated to regular algebraic conjugate self-dual cuspidal automorphic representations of $\operatorname\{GL\}_n$ over an imaginary CM field, under the assumption that the automorphic representations have Iwahori-fixed vectors at places dividing $l$ and have Shin-regular weight.},
affiliation = {Department of Mathematics, Brandeis University; Department of Mathematics, Northwestern University; Princeton University and Institute for Advanced Study; Department of Mathematics, Harvard University},
author = {Barnet-Lamb, Thomas, Gee, Toby, Geraghty, David, Taylor, Richard},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {Langlands correspondences; automorphic forms; Galois representations; local-global compatibility},
language = {eng},
month = {1},
number = {1},
pages = {57-92},
publisher = {Université Paul Sabatier, Toulouse},
title = {Local-global compatibility for $l=p$, I},
url = {http://eudml.org/doc/251021},
volume = {21},
year = {2012},
}
TY - JOUR
AU - Barnet-Lamb, Thomas
AU - Gee, Toby
AU - Geraghty, David
AU - Taylor, Richard
TI - Local-global compatibility for $l=p$, I
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2012/1//
PB - Université Paul Sabatier, Toulouse
VL - 21
IS - 1
SP - 57
EP - 92
AB - We prove the compatibility of the local and global Langlands correspondences at places dividing $l$ for the $l$-adic Galois representations associated to regular algebraic conjugate self-dual cuspidal automorphic representations of $\operatorname{GL}_n$ over an imaginary CM field, under the assumption that the automorphic representations have Iwahori-fixed vectors at places dividing $l$ and have Shin-regular weight.
LA - eng
KW - Langlands correspondences; automorphic forms; Galois representations; local-global compatibility
UR - http://eudml.org/doc/251021
ER -
References
top- Badulescu (A. I.).— Jacquet-Langlands et unitarisabilité, J. Inst. Math. Jussieu 6, no. 3, p. 349-379 (2007). Zbl1159.22005MR2329758
- Barnet-Lamb (T.), Gee (T.), Geraghty (D.), and Taylor (R.).— Local-global compatibility for , II (2011).
- Barnet-Lamb (T.), Geraghty (D.), Harris (M.), and Taylor (R.).— A family of Calabi-Yau varieties and potential automorphy II, Publ. Res. Inst. Math. Sci. 47, no. 1, p. 29-98 (2011). Zbl1264.11044MR2827723
- Caraiani (A.).— Local-global compatibility and the action of monodromy on nearby cycles, preprint arXiv:1010.2188 (2010).
- Clozel (L.).— Motifs et formes automorphes: applications du principe de fonctorialité, Automorphic forms, Shimura varieties, and L-functions, Vol. I (Ann Arbor, MI, 1988), Perspect. Math., vol. 10, Academic Press, Boston, MA, p. 77-159 (1990). Zbl0705.11029MR1044819
- Gillet (H.) and Messing (W.).— Cycle classes and Riemann-Roch for crystalline cohomology, Duke Math. J. 55, no. 3, p. 501-538 (1987). Zbl0651.14014MR904940
- Harris (M.), Shepherd-Barron (N.), and Taylor (R.).— A family of Calabi-Yau varieties and potential automorphy, Ann. of Math. (2) 171, no. 2, p. 779-813 (2010). Zbl1263.11061MR2630056
- Harris (M.) and Taylor (R.).— The geometry and cohomology of some simple Shimura varieties, Annals of Mathematics Studies, vol. 151, Princeton University Press, Princeton, NJ, With an appendix by Vladimir G. Berkovich (2001). Zbl1036.11027MR1876802
- Katz (N. M.) and Messing (W.).— Some consequences of the Riemann hypothesis for varieties over finite fields, Invent. Math. 23, p. 73-77 (1974). Zbl0275.14011MR332791
- Kottwitz (R.).— Stable trace formula: elliptic singular terms, Math. Annalen 275, p. 365-399 (1986). Zbl0577.10028MR858284
- Kottwitz (R. E.).— Points on some Shimura varieties over finite fields, J. Amer. Math. Soc. 5, no. 2, p. 373-444 (1992). Zbl0796.14014MR1124982
- Mantovan (E.).— On the cohomology of certain PEL-type Shimura varieties, Duke Math. J. 129, no. 3, p. 573-610 (2005). Zbl1112.11033MR2169874
- Sug Woo Shin.— Galois representations arising from some compact Shimura varieties, Annals of Math. (2) 173, no. 3, p. 1645-1741 (2011). Zbl1269.11053MR2800722
- Taylor (R.) and Yoshida (T.).— Compatibility of local and global Langlands correspondences, J. Amer. Math. Soc. 20, no. 2, p. 467-493 (electronic) (2007). Zbl1210.11118MR2276777
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.