Local-global compatibility for , I
Thomas Barnet-Lamb[1]; Toby Gee[2]; David Geraghty[3]; Richard Taylor[4]
- [1] Department of Mathematics, Brandeis University
- [2] Department of Mathematics, Northwestern University
- [3] Princeton University and Institute for Advanced Study
- [4] Department of Mathematics, Harvard University
Annales de la faculté des sciences de Toulouse Mathématiques (2012)
- Volume: 21, Issue: 1, page 57-92
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topReferences
top- Badulescu (A. I.).— Jacquet-Langlands et unitarisabilité, J. Inst. Math. Jussieu 6, no. 3, p. 349-379 (2007). Zbl1159.22005MR2329758
- Barnet-Lamb (T.), Gee (T.), Geraghty (D.), and Taylor (R.).— Local-global compatibility for , II (2011).
- Barnet-Lamb (T.), Geraghty (D.), Harris (M.), and Taylor (R.).— A family of Calabi-Yau varieties and potential automorphy II, Publ. Res. Inst. Math. Sci. 47, no. 1, p. 29-98 (2011). Zbl1264.11044MR2827723
- Caraiani (A.).— Local-global compatibility and the action of monodromy on nearby cycles, preprint arXiv:1010.2188 (2010).
- Clozel (L.).— Motifs et formes automorphes: applications du principe de fonctorialité, Automorphic forms, Shimura varieties, and L-functions, Vol. I (Ann Arbor, MI, 1988), Perspect. Math., vol. 10, Academic Press, Boston, MA, p. 77-159 (1990). Zbl0705.11029MR1044819
- Gillet (H.) and Messing (W.).— Cycle classes and Riemann-Roch for crystalline cohomology, Duke Math. J. 55, no. 3, p. 501-538 (1987). Zbl0651.14014MR904940
- Harris (M.), Shepherd-Barron (N.), and Taylor (R.).— A family of Calabi-Yau varieties and potential automorphy, Ann. of Math. (2) 171, no. 2, p. 779-813 (2010). Zbl1263.11061MR2630056
- Harris (M.) and Taylor (R.).— The geometry and cohomology of some simple Shimura varieties, Annals of Mathematics Studies, vol. 151, Princeton University Press, Princeton, NJ, With an appendix by Vladimir G. Berkovich (2001). Zbl1036.11027MR1876802
- Katz (N. M.) and Messing (W.).— Some consequences of the Riemann hypothesis for varieties over finite fields, Invent. Math. 23, p. 73-77 (1974). Zbl0275.14011MR332791
- Kottwitz (R.).— Stable trace formula: elliptic singular terms, Math. Annalen 275, p. 365-399 (1986). Zbl0577.10028MR858284
- Kottwitz (R. E.).— Points on some Shimura varieties over finite fields, J. Amer. Math. Soc. 5, no. 2, p. 373-444 (1992). Zbl0796.14014MR1124982
- Mantovan (E.).— On the cohomology of certain PEL-type Shimura varieties, Duke Math. J. 129, no. 3, p. 573-610 (2005). Zbl1112.11033MR2169874
- Sug Woo Shin.— Galois representations arising from some compact Shimura varieties, Annals of Math. (2) 173, no. 3, p. 1645-1741 (2011). Zbl1269.11053MR2800722
- Taylor (R.) and Yoshida (T.).— Compatibility of local and global Langlands correspondences, J. Amer. Math. Soc. 20, no. 2, p. 467-493 (electronic) (2007). Zbl1210.11118MR2276777