Local-global compatibility for l = p , I

Thomas Barnet-Lamb[1]; Toby Gee[2]; David Geraghty[3]; Richard Taylor[4]

  • [1] Department of Mathematics, Brandeis University
  • [2] Department of Mathematics, Northwestern University
  • [3] Princeton University and Institute for Advanced Study
  • [4] Department of Mathematics, Harvard University

Annales de la faculté des sciences de Toulouse Mathématiques (2012)

  • Volume: 21, Issue: 1, page 57-92
  • ISSN: 0240-2963

Abstract

top
We prove the compatibility of the local and global Langlands correspondences at places dividing l for the l -adic Galois representations associated to regular algebraic conjugate self-dual cuspidal automorphic representations of GL n over an imaginary CM field, under the assumption that the automorphic representations have Iwahori-fixed vectors at places dividing l and have Shin-regular weight.

How to cite

top

Barnet-Lamb, Thomas, et al. "Local-global compatibility for $l=p$, I." Annales de la faculté des sciences de Toulouse Mathématiques 21.1 (2012): 57-92. <http://eudml.org/doc/251021>.

@article{Barnet2012,
abstract = {We prove the compatibility of the local and global Langlands correspondences at places dividing $l$ for the $l$-adic Galois representations associated to regular algebraic conjugate self-dual cuspidal automorphic representations of $\operatorname\{GL\}_n$ over an imaginary CM field, under the assumption that the automorphic representations have Iwahori-fixed vectors at places dividing $l$ and have Shin-regular weight.},
affiliation = {Department of Mathematics, Brandeis University; Department of Mathematics, Northwestern University; Princeton University and Institute for Advanced Study; Department of Mathematics, Harvard University},
author = {Barnet-Lamb, Thomas, Gee, Toby, Geraghty, David, Taylor, Richard},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {Langlands correspondences; automorphic forms; Galois representations; local-global compatibility},
language = {eng},
month = {1},
number = {1},
pages = {57-92},
publisher = {Université Paul Sabatier, Toulouse},
title = {Local-global compatibility for $l=p$, I},
url = {http://eudml.org/doc/251021},
volume = {21},
year = {2012},
}

TY - JOUR
AU - Barnet-Lamb, Thomas
AU - Gee, Toby
AU - Geraghty, David
AU - Taylor, Richard
TI - Local-global compatibility for $l=p$, I
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2012/1//
PB - Université Paul Sabatier, Toulouse
VL - 21
IS - 1
SP - 57
EP - 92
AB - We prove the compatibility of the local and global Langlands correspondences at places dividing $l$ for the $l$-adic Galois representations associated to regular algebraic conjugate self-dual cuspidal automorphic representations of $\operatorname{GL}_n$ over an imaginary CM field, under the assumption that the automorphic representations have Iwahori-fixed vectors at places dividing $l$ and have Shin-regular weight.
LA - eng
KW - Langlands correspondences; automorphic forms; Galois representations; local-global compatibility
UR - http://eudml.org/doc/251021
ER -

References

top
  1. Badulescu (A. I.).— Jacquet-Langlands et unitarisabilité, J. Inst. Math. Jussieu 6, no. 3, p. 349-379 (2007). Zbl1159.22005MR2329758
  2. Barnet-Lamb (T.), Gee (T.), Geraghty (D.), and Taylor (R.).— Local-global compatibility for l = p , II (2011). 
  3. Barnet-Lamb (T.), Geraghty (D.), Harris (M.), and Taylor (R.).— A family of Calabi-Yau varieties and potential automorphy II, Publ. Res. Inst. Math. Sci. 47, no. 1, p. 29-98 (2011). Zbl1264.11044MR2827723
  4. Caraiani (A.).— Local-global compatibility and the action of monodromy on nearby cycles, preprint arXiv:1010.2188 (2010). 
  5. Clozel (L.).— Motifs et formes automorphes: applications du principe de fonctorialité, Automorphic forms, Shimura varieties, and L-functions, Vol. I (Ann Arbor, MI, 1988), Perspect. Math., vol. 10, Academic Press, Boston, MA, p. 77-159 (1990). Zbl0705.11029MR1044819
  6. Gillet (H.) and Messing (W.).— Cycle classes and Riemann-Roch for crystalline cohomology, Duke Math. J. 55, no. 3, p. 501-538 (1987). Zbl0651.14014MR904940
  7. Harris (M.), Shepherd-Barron (N.), and Taylor (R.).— A family of Calabi-Yau varieties and potential automorphy, Ann. of Math. (2) 171, no. 2, p. 779-813 (2010). Zbl1263.11061MR2630056
  8. Harris (M.) and Taylor (R.).— The geometry and cohomology of some simple Shimura varieties, Annals of Mathematics Studies, vol. 151, Princeton University Press, Princeton, NJ, With an appendix by Vladimir G. Berkovich (2001). Zbl1036.11027MR1876802
  9. Katz (N. M.) and Messing (W.).— Some consequences of the Riemann hypothesis for varieties over finite fields, Invent. Math. 23, p. 73-77 (1974). Zbl0275.14011MR332791
  10. Kottwitz (R.).— Stable trace formula: elliptic singular terms, Math. Annalen 275, p. 365-399 (1986). Zbl0577.10028MR858284
  11. Kottwitz (R. E.).— Points on some Shimura varieties over finite fields, J. Amer. Math. Soc. 5, no. 2, p. 373-444 (1992). Zbl0796.14014MR1124982
  12. Mantovan (E.).— On the cohomology of certain PEL-type Shimura varieties, Duke Math. J. 129, no. 3, p. 573-610 (2005). Zbl1112.11033MR2169874
  13. Sug Woo Shin.— Galois representations arising from some compact Shimura varieties, Annals of Math. (2) 173, no. 3, p. 1645-1741 (2011). Zbl1269.11053MR2800722
  14. Taylor (R.) and Yoshida (T.).— Compatibility of local and global Langlands correspondences, J. Amer. Math. Soc. 20, no. 2, p. 467-493 (electronic) (2007). Zbl1210.11118MR2276777

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.