A Torelli theorem for moduli spaces of principal bundles over a curve

Indranil Biswas[1]; Norbert Hoffmann[2]

  • [1] School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005, India
  • [2] Freie Universität Berlin, Institut fûr Mathematik, Arnimallee 3, 14195 Berlin, Germany

Annales de l’institut Fourier (2012)

  • Volume: 62, Issue: 1, page 87-106
  • ISSN: 0373-0956

Abstract

top
Let X and X be compact Riemann surfaces of genus 3 , and let G and G be nonabelian reductive complex groups. If one component G d ( X ) of the coarse moduli space for semistable principal G –bundles over X is isomorphic to another component G d ( X ) , then X is isomorphic to X .

How to cite

top

Biswas, Indranil, and Hoffmann, Norbert. "A Torelli theorem for moduli spaces of principal bundles over a curve." Annales de l’institut Fourier 62.1 (2012): 87-106. <http://eudml.org/doc/251029>.

@article{Biswas2012,
abstract = {Let $X$ and $X^\{\prime\}$ be compact Riemann surfaces of genus $\ge 3$, and let $G$ and $G^\{\prime\}$ be nonabelian reductive complex groups. If one component $\mathcal\{M\}_G^d( X)$ of the coarse moduli space for semistable principal $G$–bundles over $X$ is isomorphic to another component $\mathcal\{M\}_\{G^\{\prime\}\}^\{d^\{\prime\}\}(X^\{\prime\})$, then $X$ is isomorphic to $X^\{\prime\}$.},
affiliation = {School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005, India; Freie Universität Berlin, Institut fûr Mathematik, Arnimallee 3, 14195 Berlin, Germany},
author = {Biswas, Indranil, Hoffmann, Norbert},
journal = {Annales de l’institut Fourier},
keywords = {Principal bundle; moduli space; Torelli theorem; principal bundle},
language = {eng},
number = {1},
pages = {87-106},
publisher = {Association des Annales de l’institut Fourier},
title = {A Torelli theorem for moduli spaces of principal bundles over a curve},
url = {http://eudml.org/doc/251029},
volume = {62},
year = {2012},
}

TY - JOUR
AU - Biswas, Indranil
AU - Hoffmann, Norbert
TI - A Torelli theorem for moduli spaces of principal bundles over a curve
JO - Annales de l’institut Fourier
PY - 2012
PB - Association des Annales de l’institut Fourier
VL - 62
IS - 1
SP - 87
EP - 106
AB - Let $X$ and $X^{\prime}$ be compact Riemann surfaces of genus $\ge 3$, and let $G$ and $G^{\prime}$ be nonabelian reductive complex groups. If one component $\mathcal{M}_G^d( X)$ of the coarse moduli space for semistable principal $G$–bundles over $X$ is isomorphic to another component $\mathcal{M}_{G^{\prime}}^{d^{\prime}}(X^{\prime})$, then $X$ is isomorphic to $X^{\prime}$.
LA - eng
KW - Principal bundle; moduli space; Torelli theorem; principal bundle
UR - http://eudml.org/doc/251029
ER -

References

top
  1. S. Adams, Reduction of cocycles with hyperbolic targets, Ergodic Theory Dyn. Syst. 16 (1996), 1111-1145 Zbl0869.58031MR1424391
  2. J.-M. Drezet, M.S. Narasimhan, Groupe de Picard des variétés de modules de fibrés semi-stables sur les courbes algébriques, Invent. Math. 97 (1989), 53-94 Zbl0689.14012MR999313
  3. T.L. Gómez, I. Sols, Moduli space of principal sheaves over projective varieties, Ann. of Math. 161 (2005), 1037-1092 Zbl1079.14018MR2153406
  4. J.E. Humphreys, Linear algebraic groups, 21 (1975), Springer-Verlag, New York - Heidelberg - Berlin Zbl0471.20029MR396773
  5. J.-M. Hwang, S. Ramanan, Hecke curves and Hitchin discriminant, Ann. Sci. École Norm. Sup. 37 (2004), 801-817 Zbl1073.14046MR2103475
  6. A. Kouvidakis, T. Pantev, The automorphism group of the moduli space of semi stable vector bundles, Math. Ann. 302 (1995), 225-268 Zbl0841.14029MR1336336
  7. S. Kumar, M.S. Narasimhan, Picard group of the moduli spaces of G –bundles, Math. Ann. 308 (1997), 155-173 Zbl0884.14004MR1446205
  8. D. Luna, Slices étalés, Mém. Soc. Math. Fr. 33 (1973), 81-105 Zbl0286.14014MR342523
  9. D. Mumford, Geometric invariant theory, 34 (1965), Springer-Verlag, Berlin Zbl0797.14004MR214602
  10. D. Mumford, P. Newstead, Periods of a moduli space of bundles on curves, Amer. Jour. Math. 90 (1968), 1200-1208 Zbl0174.52902MR234958
  11. M.S. Narasimhan, S. Ramanan, Moduli of vector bundles on a compact Riemann surface, Ann. of Math. 89 (1969), 14-51 Zbl0186.54902MR242185
  12. M.S. Narasimhan, S. Ramanan, Deformations of the moduli space of vector bundles over an algebraic curve, Ann. of Math. 101 (1975), 391-417 Zbl0314.14004MR384797
  13. T. Pantev, Comparison of generalized theta functions, Duke Math. J. 76 (1994), 509-539 Zbl0843.14013MR1302323
  14. A. Ramanathan, Stable principal bundles on a compact Riemann surface, Math. Ann. 213 (1975), 129-152 Zbl0284.32019MR369747
  15. A. Ramanathan, Moduli for principal bundles over algebraic curves, Proc. Indian Acad. Sci. (Math. Sci.) 106 (1996), 301-328 and 421–449 Zbl0901.14007
  16. A.H.W. Schmitt, Singular principal bundles over higher–dimensional manifolds and their moduli spaces, Int. Math. Res. Not. (2002), 1183-1209 Zbl1034.14017MR1903952
  17. J.-P. Serre, On the fundamental group of a unirational variety, Jour. London Math. Soc. 34 (1959), 481-484 Zbl0097.36301MR109155
  18. X. Sun, Minimal rational curves on moduli spaces of stable bundles, Math. Ann. 331 (2005), 925-937 Zbl1115.14027MR2148802
  19. A.N. Tyurin, An analogue of the Torelli theorem for two-dimensional bundles over an algebraic curve of arbitrary genus (Russian), Izv. Akad. Nauk SSSR Ser. Mat. 33 (1969), 1149-1170 Zbl0225.14008MR260745
  20. A.N. Tyurin, Analogues of Torelli’s theorem for multidimensional vector bundles over an arbitrary algebraic curve (Russian), Izv. Akad. Nauk SSSR Ser. Mat. 34 (1970), 338-365 Zbl0225.14010MR265372

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.