A Torelli theorem for moduli spaces of principal bundles over a curve
Indranil Biswas[1]; Norbert Hoffmann[2]
- [1] School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005, India
- [2] Freie Universität Berlin, Institut fûr Mathematik, Arnimallee 3, 14195 Berlin, Germany
Annales de l’institut Fourier (2012)
- Volume: 62, Issue: 1, page 87-106
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBiswas, Indranil, and Hoffmann, Norbert. "A Torelli theorem for moduli spaces of principal bundles over a curve." Annales de l’institut Fourier 62.1 (2012): 87-106. <http://eudml.org/doc/251029>.
@article{Biswas2012,
abstract = {Let $X$ and $X^\{\prime\}$ be compact Riemann surfaces of genus $\ge 3$, and let $G$ and $G^\{\prime\}$ be nonabelian reductive complex groups. If one component $\mathcal\{M\}_G^d( X)$ of the coarse moduli space for semistable principal $G$–bundles over $X$ is isomorphic to another component $\mathcal\{M\}_\{G^\{\prime\}\}^\{d^\{\prime\}\}(X^\{\prime\})$, then $X$ is isomorphic to $X^\{\prime\}$.},
affiliation = {School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005, India; Freie Universität Berlin, Institut fûr Mathematik, Arnimallee 3, 14195 Berlin, Germany},
author = {Biswas, Indranil, Hoffmann, Norbert},
journal = {Annales de l’institut Fourier},
keywords = {Principal bundle; moduli space; Torelli theorem; principal bundle},
language = {eng},
number = {1},
pages = {87-106},
publisher = {Association des Annales de l’institut Fourier},
title = {A Torelli theorem for moduli spaces of principal bundles over a curve},
url = {http://eudml.org/doc/251029},
volume = {62},
year = {2012},
}
TY - JOUR
AU - Biswas, Indranil
AU - Hoffmann, Norbert
TI - A Torelli theorem for moduli spaces of principal bundles over a curve
JO - Annales de l’institut Fourier
PY - 2012
PB - Association des Annales de l’institut Fourier
VL - 62
IS - 1
SP - 87
EP - 106
AB - Let $X$ and $X^{\prime}$ be compact Riemann surfaces of genus $\ge 3$, and let $G$ and $G^{\prime}$ be nonabelian reductive complex groups. If one component $\mathcal{M}_G^d( X)$ of the coarse moduli space for semistable principal $G$–bundles over $X$ is isomorphic to another component $\mathcal{M}_{G^{\prime}}^{d^{\prime}}(X^{\prime})$, then $X$ is isomorphic to $X^{\prime}$.
LA - eng
KW - Principal bundle; moduli space; Torelli theorem; principal bundle
UR - http://eudml.org/doc/251029
ER -
References
top- S. Adams, Reduction of cocycles with hyperbolic targets, Ergodic Theory Dyn. Syst. 16 (1996), 1111-1145 Zbl0869.58031MR1424391
- J.-M. Drezet, M.S. Narasimhan, Groupe de Picard des variétés de modules de fibrés semi-stables sur les courbes algébriques, Invent. Math. 97 (1989), 53-94 Zbl0689.14012MR999313
- T.L. Gómez, I. Sols, Moduli space of principal sheaves over projective varieties, Ann. of Math. 161 (2005), 1037-1092 Zbl1079.14018MR2153406
- J.E. Humphreys, Linear algebraic groups, 21 (1975), Springer-Verlag, New York - Heidelberg - Berlin Zbl0471.20029MR396773
- J.-M. Hwang, S. Ramanan, Hecke curves and Hitchin discriminant, Ann. Sci. École Norm. Sup. 37 (2004), 801-817 Zbl1073.14046MR2103475
- A. Kouvidakis, T. Pantev, The automorphism group of the moduli space of semi stable vector bundles, Math. Ann. 302 (1995), 225-268 Zbl0841.14029MR1336336
- S. Kumar, M.S. Narasimhan, Picard group of the moduli spaces of –bundles, Math. Ann. 308 (1997), 155-173 Zbl0884.14004MR1446205
- D. Luna, Slices étalés, Mém. Soc. Math. Fr. 33 (1973), 81-105 Zbl0286.14014MR342523
- D. Mumford, Geometric invariant theory, 34 (1965), Springer-Verlag, Berlin Zbl0797.14004MR214602
- D. Mumford, P. Newstead, Periods of a moduli space of bundles on curves, Amer. Jour. Math. 90 (1968), 1200-1208 Zbl0174.52902MR234958
- M.S. Narasimhan, S. Ramanan, Moduli of vector bundles on a compact Riemann surface, Ann. of Math. 89 (1969), 14-51 Zbl0186.54902MR242185
- M.S. Narasimhan, S. Ramanan, Deformations of the moduli space of vector bundles over an algebraic curve, Ann. of Math. 101 (1975), 391-417 Zbl0314.14004MR384797
- T. Pantev, Comparison of generalized theta functions, Duke Math. J. 76 (1994), 509-539 Zbl0843.14013MR1302323
- A. Ramanathan, Stable principal bundles on a compact Riemann surface, Math. Ann. 213 (1975), 129-152 Zbl0284.32019MR369747
- A. Ramanathan, Moduli for principal bundles over algebraic curves, Proc. Indian Acad. Sci. (Math. Sci.) 106 (1996), 301-328 and 421–449 Zbl0901.14007
- A.H.W. Schmitt, Singular principal bundles over higher–dimensional manifolds and their moduli spaces, Int. Math. Res. Not. (2002), 1183-1209 Zbl1034.14017MR1903952
- J.-P. Serre, On the fundamental group of a unirational variety, Jour. London Math. Soc. 34 (1959), 481-484 Zbl0097.36301MR109155
- X. Sun, Minimal rational curves on moduli spaces of stable bundles, Math. Ann. 331 (2005), 925-937 Zbl1115.14027MR2148802
- A.N. Tyurin, An analogue of the Torelli theorem for two-dimensional bundles over an algebraic curve of arbitrary genus (Russian), Izv. Akad. Nauk SSSR Ser. Mat. 33 (1969), 1149-1170 Zbl0225.14008MR260745
- A.N. Tyurin, Analogues of Torelli’s theorem for multidimensional vector bundles over an arbitrary algebraic curve (Russian), Izv. Akad. Nauk SSSR Ser. Mat. 34 (1970), 338-365 Zbl0225.14010MR265372
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.