Hecke curves and Hitchin discriminant

Jun-Muk Hwang[1]; S. Ramanan

  • [1] Korea Institute for Advanced Study, 207-43 Cheongryangri-dong, Séoul 130-012 (Corée Sud)

Annales scientifiques de l'École Normale Supérieure (2004)

  • Volume: 37, Issue: 5, page 801-817
  • ISSN: 0012-9593

How to cite

top

Hwang, Jun-Muk, and Ramanan, S.. "Hecke curves and Hitchin discriminant." Annales scientifiques de l'École Normale Supérieure 37.5 (2004): 801-817. <http://eudml.org/doc/82646>.

@article{Hwang2004,
affiliation = {Korea Institute for Advanced Study, 207-43 Cheongryangri-dong, Séoul 130-012 (Corée Sud)},
author = {Hwang, Jun-Muk, Ramanan, S.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {smooth curves; vector bundles; moduli spaces},
language = {eng},
number = {5},
pages = {801-817},
publisher = {Elsevier},
title = {Hecke curves and Hitchin discriminant},
url = {http://eudml.org/doc/82646},
volume = {37},
year = {2004},
}

TY - JOUR
AU - Hwang, Jun-Muk
AU - Ramanan, S.
TI - Hecke curves and Hitchin discriminant
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2004
PB - Elsevier
VL - 37
IS - 5
SP - 801
EP - 817
LA - eng
KW - smooth curves; vector bundles; moduli spaces
UR - http://eudml.org/doc/82646
ER -

References

top
  1. [1] Andreotti A., On a theorem of Torelli, Amer. J. Math.80 (1958) 801-828. Zbl0084.17304MR102518
  2. [2] Beauville A., Narasimhan M.S., Ramanan S., Spectral curves and the generalized theta divisor, J. Reine Angew. Math.398 (1989) 169-179. Zbl0666.14015MR998478
  3. [3] Hitchin N.J., Stable bundles and integrable systems, Duke Math. J.54 (1987) 91-114. Zbl0627.14024MR885778
  4. [4] Hwang J.-M., Mok N., Projective manifolds dominated by abelian varieties, Math. Z.238 (2001) 89-100. Zbl1076.14021MR1860736
  5. [5] Hwang J.-M., Mok N., Finite morphisms onto Fano manifolds of Picard number 1 which have rational curves with trivial normal bundles, J. Algebraic Geom.12 (2003) 627-651. Zbl1038.14018MR1993759
  6. [6] Hwang J.-M., Mok N., Birationality of the tangent map for minimal rational curves, Asian J. Math.8 (2004) 51-64, (Special issue dedicated to Y.-T. Siu on his 60th birthday). Zbl1072.14015MR2128297
  7. [7] Hwang J.-M., Tangent vectors to Hecke curves on the moduli space of rank 2 bundles over an algebraic curve, Duke Math. J.101 (2000) 179-187. Zbl0988.14013MR1733732
  8. [8] Hwang J.-M., Geometry of minimal rational curves on Fano manifolds, in: School on Vanishing Theorems and Effective Results in Algebraic Geometry (Trieste, 2000), Abdus Salam Int. Cent. Theoret. Phys., Trieste, ICTP Lect. Notes, vol. 6, 2001, pp. 335-393. Zbl1086.14506MR1919462
  9. [9] Hwang J.-M., Hecke curves on the moduli space of vector bundles over an algebraic curve, in: Algebraic Geometry in East Asia (Kyoto, 2001), World Scientific, 2002, pp. 155-164. Zbl1077.14044MR2030452
  10. [10] Kouvidakis A., Pantev T., The automorphism group of the moduli space of semi-stable bundles, Math. Annalen302 (1995) 225-268. Zbl0841.14029MR1336336
  11. [11] Laumon G., Un analogue global du cône nilpotent, Duke Math. J.57 (1988) 647-671. Zbl0688.14023MR962524
  12. [12] Narasimhan M.S., Ramanan S., Deformations of the moduli space of vector bundles over an algebraic curve, Ann. Math.101 (1975) 391-417. Zbl0314.14004MR384797
  13. [13] Narasimhan M.S., Ramanan S., Geometry of Hecke cycles I, in: C.P. Ramanujam – a Tribute, Springer-Verlag, 1978, pp. 291-345. Zbl0427.14002MR541029

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.