2-frieze patterns and the cluster structure of the space of polygons
Sophie Morier-Genoud[1]; Valentin Ovsienko[2]; Serge Tabachnikov[3]
- [1] Institut de Mathématiques de Jussieu UMR 7586 Université Pierre et Marie Curie 4, place Jussieu, case 247 75252 Paris Cedex 05
- [2] CNRS, Institut Camille Jordan, Université Claude Bernard Lyon 1, 43 boulevard du 11 novembre 1918, 69622 Villeurbanne cedex, France
- [3] Department of Mathematics, Pennsylvania State University, University Park, PA 16802, USA
Annales de l’institut Fourier (2012)
- Volume: 62, Issue: 3, page 937-987
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topMorier-Genoud, Sophie, Ovsienko, Valentin, and Tabachnikov, Serge. "2-frieze patterns and the cluster structure of the space of polygons." Annales de l’institut Fourier 62.3 (2012): 937-987. <http://eudml.org/doc/251031>.
@article{Morier2012,
abstract = {We study 2-frieze patterns generalizing that of the classical Coxeter-Conway frieze patterns. The geometric realization of this space is the space of $n$-gons (in the projective plane and in 3-dimensional vector space) which is a close relative of the moduli space of genus $0$ curves with $n$ marked points. We show that the space of 2-frieze patterns is a cluster manifold and study its algebraic and arithmetic properties.},
affiliation = {Institut de Mathématiques de Jussieu UMR 7586 Université Pierre et Marie Curie 4, place Jussieu, case 247 75252 Paris Cedex 05; CNRS, Institut Camille Jordan, Université Claude Bernard Lyon 1, 43 boulevard du 11 novembre 1918, 69622 Villeurbanne cedex, France; Department of Mathematics, Pennsylvania State University, University Park, PA 16802, USA},
author = {Morier-Genoud, Sophie, Ovsienko, Valentin, Tabachnikov, Serge},
journal = {Annales de l’institut Fourier},
keywords = {Frieze patterns; Coxeter-Conway friezes; moduli space; cluster algebra; pentagram map; frieze patterns},
language = {eng},
number = {3},
pages = {937-987},
publisher = {Association des Annales de l’institut Fourier},
title = {2-frieze patterns and the cluster structure of the space of polygons},
url = {http://eudml.org/doc/251031},
volume = {62},
year = {2012},
}
TY - JOUR
AU - Morier-Genoud, Sophie
AU - Ovsienko, Valentin
AU - Tabachnikov, Serge
TI - 2-frieze patterns and the cluster structure of the space of polygons
JO - Annales de l’institut Fourier
PY - 2012
PB - Association des Annales de l’institut Fourier
VL - 62
IS - 3
SP - 937
EP - 987
AB - We study 2-frieze patterns generalizing that of the classical Coxeter-Conway frieze patterns. The geometric realization of this space is the space of $n$-gons (in the projective plane and in 3-dimensional vector space) which is a close relative of the moduli space of genus $0$ curves with $n$ marked points. We show that the space of 2-frieze patterns is a cluster manifold and study its algebraic and arithmetic properties.
LA - eng
KW - Frieze patterns; Coxeter-Conway friezes; moduli space; cluster algebra; pentagram map; frieze patterns
UR - http://eudml.org/doc/251031
ER -
References
top- L. Aguirre, G. Felder, A. Veselov, Gaudin subalgebras and stable rational curves Zbl1228.14025
- F. Bergeron, C. Reutenauer, -Tiling of the Plane, Illinois J. Math. 54 (2010), 263-300 Zbl1236.13018MR2776996
- P. Caldero, F. Chapoton, Cluster algebras as Hall algebras of quiver representations, Comment. Math. Helv. 81 (2006), 595-616 Zbl1119.16013MR2250855
- F. Chapoton
- J. H. Conway, H. S. M. Coxeter, Triangulated polygons and frieze patterns, Math. Gaz. 57 (1973), 87-94 and 175–183 Zbl0288.05021MR461269
- H. S. M. Coxeter, Frieze patterns, Acta Arith. 18 (1971), 297-310 Zbl0217.18101MR286771
- P. Di Francesco, The solution of the T-system for arbitrary boundary, Electron. J. Combin. 17 (2010) MR2661392
- P. Di Francesco, R. Kedem, Positivity of the -system cluster algebra, Electron. J. Combin. 16 (2009) Zbl1229.13019MR2577308
- P. Di Francesco, R. Kedem, -systems as cluster algebras. II. Cartan matrix of finite type and the polynomial property, Lett. Math. Phys. 89 (2009), 183-216 Zbl1195.81077MR2551179
- V. Fock, A. Goncharov, Moduli spaces of local systems and higher Teichmüller theory, Publ. Math. Inst. Hautes Etudes Sci. 103 (2006), 1-211 Zbl1099.14025MR2233852
- V. Fock, A. Goncharov, Moduli spaces of convex projective structures on surfaces, Adv. Math. 208 (2007), 249-273 Zbl1111.32013MR2304317
- S. Fomin, A. Zelevinsky, Cluster algebras. I. Foundations, J. Amer. Math. Soc. 15 (2002), 497-529 Zbl1021.16017MR1887642
- S. Fomin, A. Zelevinsky, The Laurent phenomenon, Adv. in Appl. Math. 28 (2002), 119-144 Zbl1012.05012MR1888840
- S. Fomin, A. Zelevinsky, Cluster algebras. IV. Coefficients, Compos. Math. 143 (2007), 112-164 Zbl1127.16023MR2295199
- M. Gekhtman, M. Shapiro, A. Vainshtein, Cluster algebras and Poisson geometry, (2010), Amer. Math. Soc., Providence, RI Zbl1217.13001MR2683456
- M. Glick, The pentagram map and Y-patterns Zbl1229.05021
- A. Henriques, A periodicity theorem for the octahedron recurrence, J. Algebraic Combin. 26 (2007), 1-26 Zbl1125.05106MR2335700
- B. Keller, The periodicity conjecture for pairs of Dynkin diagrams Zbl1320.17007
- I. Marshall, M. Semenov-Tian-Shansky, Poisson groups and differential Galois theory of Schroedinger equation on the circle, Comm. Math. Phys. 284 (2008), 537-552 Zbl1165.37029MR2448140
- V. Ovsienko, R. Schwartz, S. Tabachnikov, Liouville-Arnold integrability of the pentagram map on closed polygons Zbl1315.37035
- V. Ovsienko, R. Schwartz, S. Tabachnikov, The Pentagram map: a discrete integrable system, Comm. Math. Phys. 299 (2010), 409-446 Zbl1209.37063MR2679816
- V. Ovsienko, S. Tabachnikov, Projective differential geometry old and new. From the Schwarzian derivative to the cohomology of diffeomorphism groups, (2005), Cambridge University Press, Cambridge Zbl1073.53001MR2177471
- J. Propp, The combinatorics of frieze patterns and Markoff numbers
- R. Schwartz, The pentagram map, Experimental Math. 1 (1992), 71-81 Zbl0765.52004MR1181089
- R. Schwartz, Discrete monodromy, pentagrams, and the method of condensation, J. Fixed Point Theory Appl. 3 (2008), 379-409 Zbl1148.51001MR2434454
- J. Scott, Grassmannians and cluster algebras, Proc. London Math. Soc. 92 (2006), 345-380 Zbl1088.22009MR2205721
- F. Soloviev, Integrability of the Pentagram Map Zbl1282.14061
- S. Tabachnikov, Variations on R. Schwartz’s inequality for the Schwarzian derivative Zbl1243.52006
- The On-Line Encyclopedia of Integer Sequences Zbl1044.11108
- A. Volkov, On the periodicity conjecture for -systems, Comm. Math. Phys. 276 (2007), 509-517 Zbl1136.82011MR2346398
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.