2-frieze patterns and the cluster structure of the space of polygons

Sophie Morier-Genoud[1]; Valentin Ovsienko[2]; Serge Tabachnikov[3]

  • [1] Institut de Mathématiques de Jussieu UMR 7586 Université Pierre et Marie Curie 4, place Jussieu, case 247 75252 Paris Cedex 05
  • [2] CNRS, Institut Camille Jordan, Université Claude Bernard Lyon 1, 43 boulevard du 11 novembre 1918, 69622 Villeurbanne cedex, France
  • [3] Department of Mathematics, Pennsylvania State University, University Park, PA 16802, USA

Annales de l’institut Fourier (2012)

  • Volume: 62, Issue: 3, page 937-987
  • ISSN: 0373-0956

Abstract

top
We study 2-frieze patterns generalizing that of the classical Coxeter-Conway frieze patterns. The geometric realization of this space is the space of n -gons (in the projective plane and in 3-dimensional vector space) which is a close relative of the moduli space of genus 0 curves with n marked points. We show that the space of 2-frieze patterns is a cluster manifold and study its algebraic and arithmetic properties.

How to cite

top

Morier-Genoud, Sophie, Ovsienko, Valentin, and Tabachnikov, Serge. "2-frieze patterns and the cluster structure of the space of polygons." Annales de l’institut Fourier 62.3 (2012): 937-987. <http://eudml.org/doc/251031>.

@article{Morier2012,
abstract = {We study 2-frieze patterns generalizing that of the classical Coxeter-Conway frieze patterns. The geometric realization of this space is the space of $n$-gons (in the projective plane and in 3-dimensional vector space) which is a close relative of the moduli space of genus $0$ curves with $n$ marked points. We show that the space of 2-frieze patterns is a cluster manifold and study its algebraic and arithmetic properties.},
affiliation = {Institut de Mathématiques de Jussieu UMR 7586 Université Pierre et Marie Curie 4, place Jussieu, case 247 75252 Paris Cedex 05; CNRS, Institut Camille Jordan, Université Claude Bernard Lyon 1, 43 boulevard du 11 novembre 1918, 69622 Villeurbanne cedex, France; Department of Mathematics, Pennsylvania State University, University Park, PA 16802, USA},
author = {Morier-Genoud, Sophie, Ovsienko, Valentin, Tabachnikov, Serge},
journal = {Annales de l’institut Fourier},
keywords = {Frieze patterns; Coxeter-Conway friezes; moduli space; cluster algebra; pentagram map; frieze patterns},
language = {eng},
number = {3},
pages = {937-987},
publisher = {Association des Annales de l’institut Fourier},
title = {2-frieze patterns and the cluster structure of the space of polygons},
url = {http://eudml.org/doc/251031},
volume = {62},
year = {2012},
}

TY - JOUR
AU - Morier-Genoud, Sophie
AU - Ovsienko, Valentin
AU - Tabachnikov, Serge
TI - 2-frieze patterns and the cluster structure of the space of polygons
JO - Annales de l’institut Fourier
PY - 2012
PB - Association des Annales de l’institut Fourier
VL - 62
IS - 3
SP - 937
EP - 987
AB - We study 2-frieze patterns generalizing that of the classical Coxeter-Conway frieze patterns. The geometric realization of this space is the space of $n$-gons (in the projective plane and in 3-dimensional vector space) which is a close relative of the moduli space of genus $0$ curves with $n$ marked points. We show that the space of 2-frieze patterns is a cluster manifold and study its algebraic and arithmetic properties.
LA - eng
KW - Frieze patterns; Coxeter-Conway friezes; moduli space; cluster algebra; pentagram map; frieze patterns
UR - http://eudml.org/doc/251031
ER -

References

top
  1. L. Aguirre, G. Felder, A. Veselov, Gaudin subalgebras and stable rational curves Zbl1228.14025
  2. F. Bergeron, C. Reutenauer, SL k -Tiling of the Plane, Illinois J. Math. 54 (2010), 263-300 Zbl1236.13018MR2776996
  3. P. Caldero, F. Chapoton, Cluster algebras as Hall algebras of quiver representations, Comment. Math. Helv. 81 (2006), 595-616 Zbl1119.16013MR2250855
  4. F. Chapoton 
  5. J. H. Conway, H. S. M. Coxeter, Triangulated polygons and frieze patterns, Math. Gaz. 57 (1973), 87-94 and 175–183 Zbl0288.05021MR461269
  6. H. S. M. Coxeter, Frieze patterns, Acta Arith. 18 (1971), 297-310 Zbl0217.18101MR286771
  7. P. Di Francesco, The solution of the A r T-system for arbitrary boundary, Electron. J. Combin. 17 (2010) MR2661392
  8. P. Di Francesco, R. Kedem, Positivity of the T -system cluster algebra, Electron. J. Combin. 16 (2009) Zbl1229.13019MR2577308
  9. P. Di Francesco, R. Kedem, Q -systems as cluster algebras. II. Cartan matrix of finite type and the polynomial property, Lett. Math. Phys. 89 (2009), 183-216 Zbl1195.81077MR2551179
  10. V. Fock, A. Goncharov, Moduli spaces of local systems and higher Teichmüller theory, Publ. Math. Inst. Hautes Etudes Sci. 103 (2006), 1-211 Zbl1099.14025MR2233852
  11. V. Fock, A. Goncharov, Moduli spaces of convex projective structures on surfaces, Adv. Math. 208 (2007), 249-273 Zbl1111.32013MR2304317
  12. S. Fomin, A. Zelevinsky, Cluster algebras. I. Foundations, J. Amer. Math. Soc. 15 (2002), 497-529 Zbl1021.16017MR1887642
  13. S. Fomin, A. Zelevinsky, The Laurent phenomenon, Adv. in Appl. Math. 28 (2002), 119-144 Zbl1012.05012MR1888840
  14. S. Fomin, A. Zelevinsky, Cluster algebras. IV. Coefficients, Compos. Math. 143 (2007), 112-164 Zbl1127.16023MR2295199
  15. M. Gekhtman, M. Shapiro, A. Vainshtein, Cluster algebras and Poisson geometry, (2010), Amer. Math. Soc., Providence, RI Zbl1217.13001MR2683456
  16. M. Glick, The pentagram map and Y-patterns Zbl1229.05021
  17. A. Henriques, A periodicity theorem for the octahedron recurrence, J. Algebraic Combin. 26 (2007), 1-26 Zbl1125.05106MR2335700
  18. B. Keller, The periodicity conjecture for pairs of Dynkin diagrams Zbl1320.17007
  19. I. Marshall, M. Semenov-Tian-Shansky, Poisson groups and differential Galois theory of Schroedinger equation on the circle, Comm. Math. Phys. 284 (2008), 537-552 Zbl1165.37029MR2448140
  20. V. Ovsienko, R. Schwartz, S. Tabachnikov, Liouville-Arnold integrability of the pentagram map on closed polygons Zbl1315.37035
  21. V. Ovsienko, R. Schwartz, S. Tabachnikov, The Pentagram map: a discrete integrable system, Comm. Math. Phys. 299 (2010), 409-446 Zbl1209.37063MR2679816
  22. V. Ovsienko, S. Tabachnikov, Projective differential geometry old and new. From the Schwarzian derivative to the cohomology of diffeomorphism groups, (2005), Cambridge University Press, Cambridge Zbl1073.53001MR2177471
  23. J. Propp, The combinatorics of frieze patterns and Markoff numbers 
  24. R. Schwartz, The pentagram map, Experimental Math. 1 (1992), 71-81 Zbl0765.52004MR1181089
  25. R. Schwartz, Discrete monodromy, pentagrams, and the method of condensation, J. Fixed Point Theory Appl. 3 (2008), 379-409 Zbl1148.51001MR2434454
  26. J. Scott, Grassmannians and cluster algebras, Proc. London Math. Soc. 92 (2006), 345-380 Zbl1088.22009MR2205721
  27. F. Soloviev, Integrability of the Pentagram Map Zbl1282.14061
  28. S. Tabachnikov, Variations on R. Schwartz’s inequality for the Schwarzian derivative Zbl1243.52006
  29. The On-Line Encyclopedia of Integer Sequences Zbl1044.11108
  30. A. Volkov, On the periodicity conjecture for Y -systems, Comm. Math. Phys. 276 (2007), 509-517 Zbl1136.82011MR2346398

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.