Quadratic Differentials and Equivariant Deformation Theory of Curves

Bernhard Köck[1]; Aristides Kontogeorgis[2]

  • [1] University of Southampton School of Mathematics Highfield Southampton SO17 1BJ (United Kingdom)
  • [2] National and Kapodistrian University of Athens Department of Mathematics Panepistimioupolis GR-157 84 Athens (Greece)

Annales de l’institut Fourier (2012)

  • Volume: 62, Issue: 3, page 1015-1043
  • ISSN: 0373-0956

Abstract

top
Given a finite p -group G acting on a smooth projective curve X over an algebraically closed field k of characteristic p , the dimension of the tangent space of the associated equivariant deformation functor is equal to the dimension of the space of coinvariants of G acting on the space V of global holomorphic quadratic differentials on X . We apply known results about the Galois module structure of Riemann-Roch spaces to compute this dimension when G is cyclic or when the action of G on X is weakly ramified. Moreover we determine certain subrepresentations of V , called p -rank representations.

How to cite

top

Köck, Bernhard, and Kontogeorgis, Aristides. "Quadratic Differentials and Equivariant Deformation Theory of Curves." Annales de l’institut Fourier 62.3 (2012): 1015-1043. <http://eudml.org/doc/251036>.

@article{Köck2012,
abstract = {Given a finite $p$-group $G$ acting on a smooth projective curve $X$ over an algebraically closed field $k$ of characteristic $p$, the dimension of the tangent space of the associated equivariant deformation functor is equal to the dimension of the space of coinvariants of $G$ acting on the space $V$ of global holomorphic quadratic differentials on $X$. We apply known results about the Galois module structure of Riemann-Roch spaces to compute this dimension when $G$ is cyclic or when the action of $G$ on $X$ is weakly ramified. Moreover we determine certain subrepresentations of $V$, called $p$-rank representations.},
affiliation = {University of Southampton School of Mathematics Highfield Southampton SO17 1BJ (United Kingdom); National and Kapodistrian University of Athens Department of Mathematics Panepistimioupolis GR-157 84 Athens (Greece)},
author = {Köck, Bernhard, Kontogeorgis, Aristides},
journal = {Annales de l’institut Fourier},
keywords = {quadratic differentials; tangent space; equivariant deformation functor; Galois modules; Riemann-Roch spaces; weakly ramified; $p$-rank representation},
language = {eng},
number = {3},
pages = {1015-1043},
publisher = {Association des Annales de l’institut Fourier},
title = {Quadratic Differentials and Equivariant Deformation Theory of Curves},
url = {http://eudml.org/doc/251036},
volume = {62},
year = {2012},
}

TY - JOUR
AU - Köck, Bernhard
AU - Kontogeorgis, Aristides
TI - Quadratic Differentials and Equivariant Deformation Theory of Curves
JO - Annales de l’institut Fourier
PY - 2012
PB - Association des Annales de l’institut Fourier
VL - 62
IS - 3
SP - 1015
EP - 1043
AB - Given a finite $p$-group $G$ acting on a smooth projective curve $X$ over an algebraically closed field $k$ of characteristic $p$, the dimension of the tangent space of the associated equivariant deformation functor is equal to the dimension of the space of coinvariants of $G$ acting on the space $V$ of global holomorphic quadratic differentials on $X$. We apply known results about the Galois module structure of Riemann-Roch spaces to compute this dimension when $G$ is cyclic or when the action of $G$ on $X$ is weakly ramified. Moreover we determine certain subrepresentations of $V$, called $p$-rank representations.
LA - eng
KW - quadratic differentials; tangent space; equivariant deformation functor; Galois modules; Riemann-Roch spaces; weakly ramified; $p$-rank representation
UR - http://eudml.org/doc/251036
ER -

References

top
  1. José Bertin, Ariane Mézard, Déformations formelles des revêtements sauvagement ramifiés de courbes algébriques, Invent. Math. 141 (2000), 195-238 Zbl0993.14014MR1767273
  2. Niels Borne, A relative Shafarevich theorem, Math. Z. 248 (2004), 351-367 Zbl1079.14036MR2088933
  3. Niels Borne, Cohomology of G -sheaves in positive characteristic, Adv. Math. 201 (2006), 454-515 Zbl1105.14063MR2211535
  4. Gunther Cornelissen, Fumiharu Kato, Equivariant deformation of Mumford curves and of ordinary curves in positive characteristic, Duke Math. J. 116 (2003), 431-470 Zbl1092.14032MR1958094
  5. Gunther Cornelissen, Fumiharu Kato, Zur Entartung schwach verzweigter Gruppenoperationen auf Kurven, J. Reine Angew. Math. 589 (2005), 201-236 MR2194683
  6. Hershel M. Farkas, Irwin Kra, Riemann surfaces, 71 (1980), Springer-Verlag, New York Zbl0764.30001MR583745
  7. Robin Hartshorne, Algebraic geometry, (1977), Springer-Verlag, New York Zbl0531.14001MR463157
  8. Sotiris Karanikolopoulos, On holomorphic polydifferentials in positive characteristic, to appear in Math. Nachr., 25pp (2010) Zbl1246.14043
  9. Bernhard Köck, Galois structure of Zariski cohomology for weakly ramified covers of curves, Amer. J. Math. 126 (2004), 1085-1107 Zbl1095.14027MR2089083
  10. Aristides Kontogeorgis, On the tangent space of the deformation functor of curves with automorphisms, Algebra Number Theory 1 (2007), 119-161 Zbl1183.14043MR2361938
  11. Aristides Kontogeorgis, Polydifferentials and the deformation functor of curves with automorphisms, J. Pure Appl. Algebra 210 (2007), 551-558 Zbl1120.14020MR2320018
  12. Aristides Kontogeorgis, The ramification sequence for a fixed point of an automorphism of a curve and the Weierstrass gap sequence, Math. Z. 259 (2008), 471-479 Zbl1144.14026MR2395122
  13. Shōichi Nakajima, Equivariant form of the Deuring-Šafarevič formula for Hasse-Witt invariants, Math. Z. 190 (1985), 559-566 Zbl0559.14022MR808922
  14. Shōichi Nakajima, Action of an automorphism of order p on cohomology groups of an algebraic curve, J. Pure Appl. Algebra 42 (1986), 85-94 Zbl0607.14022MR852320
  15. Shōichi Nakajima, p -ranks and automorphism groups of algebraic curves, Trans. Amer. Math. Soc. 303 (1987), 595-607 Zbl0644.14010MR902787
  16. Michael Schlessinger, Functors of Artin rings, Trans. Amer. Math. Soc. 130 (1968), 208-222 Zbl0167.49503MR217093
  17. Jean-Pierre Serre, Linear representations of finite groups, 42 (1977), Springer-Verlag, New York Zbl0355.20006MR450380
  18. Jean-Pierre Serre, Local fields, 67 (1979), Springer-Verlag, New York Zbl0423.12016MR554237
  19. Joseph H. Silverman, The arithmetic of elliptic curves, 106 (2009), Springer, Dordrecht Zbl0585.14026MR2514094
  20. Nicolas Stalder, On p -rank representations, J. Algebra 280 (2004), 825-841 Zbl1100.14022MR2090066
  21. Henning Stichtenoth, Algebraic function fields and codes, 254 (2009), Springer-Verlag, Berlin Zbl0816.14011MR2464941
  22. Doré Subrao, The p -rank of Artin-Schreier curves, Manuscripta Math. 16 (1975), 169-193 Zbl0321.14017MR376693
  23. Charles A. Weibel, An introduction to homological algebra, 38 (1994), Cambridge University Press, Cambridge Zbl0797.18001MR1269324

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.