Quadratic Differentials and Equivariant Deformation Theory of Curves
Bernhard Köck[1]; Aristides Kontogeorgis[2]
- [1] University of Southampton School of Mathematics Highfield Southampton SO17 1BJ (United Kingdom)
- [2] National and Kapodistrian University of Athens Department of Mathematics Panepistimioupolis GR-157 84 Athens (Greece)
Annales de l’institut Fourier (2012)
- Volume: 62, Issue: 3, page 1015-1043
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topKöck, Bernhard, and Kontogeorgis, Aristides. "Quadratic Differentials and Equivariant Deformation Theory of Curves." Annales de l’institut Fourier 62.3 (2012): 1015-1043. <http://eudml.org/doc/251036>.
@article{Köck2012,
abstract = {Given a finite $p$-group $G$ acting on a smooth projective curve $X$ over an algebraically closed field $k$ of characteristic $p$, the dimension of the tangent space of the associated equivariant deformation functor is equal to the dimension of the space of coinvariants of $G$ acting on the space $V$ of global holomorphic quadratic differentials on $X$. We apply known results about the Galois module structure of Riemann-Roch spaces to compute this dimension when $G$ is cyclic or when the action of $G$ on $X$ is weakly ramified. Moreover we determine certain subrepresentations of $V$, called $p$-rank representations.},
affiliation = {University of Southampton School of Mathematics Highfield Southampton SO17 1BJ (United Kingdom); National and Kapodistrian University of Athens Department of Mathematics Panepistimioupolis GR-157 84 Athens (Greece)},
author = {Köck, Bernhard, Kontogeorgis, Aristides},
journal = {Annales de l’institut Fourier},
keywords = {quadratic differentials; tangent space; equivariant deformation functor; Galois modules; Riemann-Roch spaces; weakly ramified; $p$-rank representation},
language = {eng},
number = {3},
pages = {1015-1043},
publisher = {Association des Annales de l’institut Fourier},
title = {Quadratic Differentials and Equivariant Deformation Theory of Curves},
url = {http://eudml.org/doc/251036},
volume = {62},
year = {2012},
}
TY - JOUR
AU - Köck, Bernhard
AU - Kontogeorgis, Aristides
TI - Quadratic Differentials and Equivariant Deformation Theory of Curves
JO - Annales de l’institut Fourier
PY - 2012
PB - Association des Annales de l’institut Fourier
VL - 62
IS - 3
SP - 1015
EP - 1043
AB - Given a finite $p$-group $G$ acting on a smooth projective curve $X$ over an algebraically closed field $k$ of characteristic $p$, the dimension of the tangent space of the associated equivariant deformation functor is equal to the dimension of the space of coinvariants of $G$ acting on the space $V$ of global holomorphic quadratic differentials on $X$. We apply known results about the Galois module structure of Riemann-Roch spaces to compute this dimension when $G$ is cyclic or when the action of $G$ on $X$ is weakly ramified. Moreover we determine certain subrepresentations of $V$, called $p$-rank representations.
LA - eng
KW - quadratic differentials; tangent space; equivariant deformation functor; Galois modules; Riemann-Roch spaces; weakly ramified; $p$-rank representation
UR - http://eudml.org/doc/251036
ER -
References
top- José Bertin, Ariane Mézard, Déformations formelles des revêtements sauvagement ramifiés de courbes algébriques, Invent. Math. 141 (2000), 195-238 Zbl0993.14014MR1767273
- Niels Borne, A relative Shafarevich theorem, Math. Z. 248 (2004), 351-367 Zbl1079.14036MR2088933
- Niels Borne, Cohomology of -sheaves in positive characteristic, Adv. Math. 201 (2006), 454-515 Zbl1105.14063MR2211535
- Gunther Cornelissen, Fumiharu Kato, Equivariant deformation of Mumford curves and of ordinary curves in positive characteristic, Duke Math. J. 116 (2003), 431-470 Zbl1092.14032MR1958094
- Gunther Cornelissen, Fumiharu Kato, Zur Entartung schwach verzweigter Gruppenoperationen auf Kurven, J. Reine Angew. Math. 589 (2005), 201-236 MR2194683
- Hershel M. Farkas, Irwin Kra, Riemann surfaces, 71 (1980), Springer-Verlag, New York Zbl0764.30001MR583745
- Robin Hartshorne, Algebraic geometry, (1977), Springer-Verlag, New York Zbl0531.14001MR463157
- Sotiris Karanikolopoulos, On holomorphic polydifferentials in positive characteristic, to appear in Math. Nachr., 25pp (2010) Zbl1246.14043
- Bernhard Köck, Galois structure of Zariski cohomology for weakly ramified covers of curves, Amer. J. Math. 126 (2004), 1085-1107 Zbl1095.14027MR2089083
- Aristides Kontogeorgis, On the tangent space of the deformation functor of curves with automorphisms, Algebra Number Theory 1 (2007), 119-161 Zbl1183.14043MR2361938
- Aristides Kontogeorgis, Polydifferentials and the deformation functor of curves with automorphisms, J. Pure Appl. Algebra 210 (2007), 551-558 Zbl1120.14020MR2320018
- Aristides Kontogeorgis, The ramification sequence for a fixed point of an automorphism of a curve and the Weierstrass gap sequence, Math. Z. 259 (2008), 471-479 Zbl1144.14026MR2395122
- Shōichi Nakajima, Equivariant form of the Deuring-Šafarevič formula for Hasse-Witt invariants, Math. Z. 190 (1985), 559-566 Zbl0559.14022MR808922
- Shōichi Nakajima, Action of an automorphism of order on cohomology groups of an algebraic curve, J. Pure Appl. Algebra 42 (1986), 85-94 Zbl0607.14022MR852320
- Shōichi Nakajima, -ranks and automorphism groups of algebraic curves, Trans. Amer. Math. Soc. 303 (1987), 595-607 Zbl0644.14010MR902787
- Michael Schlessinger, Functors of Artin rings, Trans. Amer. Math. Soc. 130 (1968), 208-222 Zbl0167.49503MR217093
- Jean-Pierre Serre, Linear representations of finite groups, 42 (1977), Springer-Verlag, New York Zbl0355.20006MR450380
- Jean-Pierre Serre, Local fields, 67 (1979), Springer-Verlag, New York Zbl0423.12016MR554237
- Joseph H. Silverman, The arithmetic of elliptic curves, 106 (2009), Springer, Dordrecht Zbl0585.14026MR2514094
- Nicolas Stalder, On -rank representations, J. Algebra 280 (2004), 825-841 Zbl1100.14022MR2090066
- Henning Stichtenoth, Algebraic function fields and codes, 254 (2009), Springer-Verlag, Berlin Zbl0816.14011MR2464941
- Doré Subrao, The -rank of Artin-Schreier curves, Manuscripta Math. 16 (1975), 169-193 Zbl0321.14017MR376693
- Charles A. Weibel, An introduction to homological algebra, 38 (1994), Cambridge University Press, Cambridge Zbl0797.18001MR1269324
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.