The algebraic groups leading to the Roth inequalities

Masami Fujimori[1]

  • [1] Kanagawa Institute of Technology 243-0292 Japan

Journal de Théorie des Nombres de Bordeaux (2012)

  • Volume: 24, Issue: 2, page 257-292
  • ISSN: 1246-7405

Abstract

top
We determine the algebraic groups which have a close relation to the Roth inequalities.

How to cite

top

Fujimori, Masami. "The algebraic groups leading to the Roth inequalities." Journal de Théorie des Nombres de Bordeaux 24.2 (2012): 257-292. <http://eudml.org/doc/251037>.

@article{Fujimori2012,
abstract = {We determine the algebraic groups which have a close relation to the Roth inequalities.},
affiliation = {Kanagawa Institute of Technology 243-0292 Japan},
author = {Fujimori, Masami},
journal = {Journal de Théorie des Nombres de Bordeaux},
language = {eng},
month = {6},
number = {2},
pages = {257-292},
publisher = {Société Arithmétique de Bordeaux},
title = {The algebraic groups leading to the Roth inequalities},
url = {http://eudml.org/doc/251037},
volume = {24},
year = {2012},
}

TY - JOUR
AU - Fujimori, Masami
TI - The algebraic groups leading to the Roth inequalities
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2012/6//
PB - Société Arithmétique de Bordeaux
VL - 24
IS - 2
SP - 257
EP - 292
AB - We determine the algebraic groups which have a close relation to the Roth inequalities.
LA - eng
UR - http://eudml.org/doc/251037
ER -

References

top
  1. Y. André, Slope filtrations. Confluentes Math. 1 (2009), 1–85 (arXiv:0812.3921v2). Zbl1213.14039MR2571693
  2. A. Borel, Linear Algebraic Groups, Second Enlarged Edition. Graduate Texts in Math. 126, Springer-Verlag, New York, 1991. Zbl0726.20030MR1102012
  3. J.-F. Dat, S. Orlik, and M. Rapoport, Period Domains over Finite and p -adic Fields. Cambridge Tracts in Math. 183, Cambridge Univ. Press, New York, 2010. Zbl1206.14001MR2676072
  4. P. Deligne and J. S. Milne, Tannakian Categories. In Hodge Cycles, Motives, and Shimura Varieties, Lect. Notes in Math. 900, 101–228, Springer-Verlag, Berlin Heidelberg, 1982. Zbl0477.14004MR654325
  5. J.-H. Evertse, The subspace theorem and twisted heights. Preprint, 32pp. (http://www.math.leidenuniv.nl/~evertse/publications.shtml) Zbl1282.11085
  6. G. Faltings, Mumford-Stabilität in der algebraischen Geometrie. Proceedings of the International Congress of Mathematicians 1994, Zürich, Switzerland, 648–655, Birkhäuser Verlag, Basel, Switzerland, 1995. Zbl0871.14010MR1403965
  7. G. Faltings and G. Wüstholz, Diophantine approximations on projective spaces. Invent. Math. 116 (1994), 109–138. Zbl0805.14011MR1253191
  8. M. Fujimori, On systems of linear inequalities. Bull. Soc. Math. France 131 (2003), 41–57. Corrigenda. ibid. 132 (2004), 613–616. Zbl1119.11038MR1975805
  9. M. Rapoport, Analogien zwischen den Modulräumen von Vektorbündeln und von Flaggen. Jahresber. Deutsch. Math.-Verein. 99 (1997), 164–180. Zbl0891.14010MR1480327
  10. M. Rapoport, Period domains over finite and local fields. In Algebraic Geometry—Santa Cruz 1995, Proc. Sympos. Pure Math. 62, 361–381, Amer. Math. Soc., Providence, RI, 1997. Zbl0924.14009MR1492528
  11. N. S. Rivano, Catégories Tannakiennes. Lect. Notes in Math. 265, Springer-Verlag, Berlin Heidelberg, 1972. Zbl0241.14008MR338002
  12. W. M. Schmidt, Diophantine Approximation. Lect. Notes in Math. 785, Springer-Verlag, Berlin Heidelberg, 1980. Zbl0421.10019MR568710
  13. B. Totaro, Tensor products in p -adic Hodge theory. Duke Math. J. 83 (1996), 79–104. Zbl0873.14019MR1388844

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.